Purpose: The development of new approaches to human vision restoration could be greatly accelerated with the use of nonhuman primate models; however, there is a paucity of primate models of outer retina degeneration with good spatial localization. To limit ablation to the photoreceptors, we developed a new approach that uses a near-infrared ultrafast laser, focused using adaptive optics, to concentrate light in a small focal volume within the retina.
Methods: In the eyes of eight anesthetized macaques, 187 locations were exposed to laser powers from 50 to 210 mW.
Stem cell-based transplantation therapies offer hope for currently untreatable retinal degenerations; however, preclinical progress has been largely confined to rodent models. Here, we describe an experimental platform for accelerating photoreceptor replacement therapy in the nonhuman primate, which has a visual system much more similar to the human. We deployed fluorescence adaptive optics scanning light ophthalmoscopy (FAOSLO) to noninvasively track transplanted photoreceptor precursors over time at cellular resolution in the living macaque.
View Article and Find Full Text PDFOptogenetic therapies for vision restoration aim to confer intrinsic light sensitivity to retinal ganglion cells when photoreceptors have degenerated and light sensitivity has been irreversibly lost. We combine adaptive optics ophthalmoscopy with calcium imaging to optically record optogenetically restored retinal ganglion cell activity in the fovea of the living primate. Recording from the intact eye of a living animal, we compare the patterns of activity evoked by the optogenetic actuator ChrimsonR with natural photoreceptor mediated stimulation in the same retinal ganglion cells.
View Article and Find Full Text PDFOptical stimulation of cells expressing light-sensitive proteins (opsins) has allowed targeted activation with cellular specificity. However, since narrow-band light has been used for excitation of these optogenetic probes, only active stimulation strategies are being attempted for clinical applications such as restoration of vision. Here, we report use of broad spectral excitation (white light) for optogenetic stimulation of opsin-sensitized cells.
View Article and Find Full Text PDFStimulation of specific neurons expressing opsins in a targeted region to manipulate brain function has proved to be a powerful tool in neuroscience. However, the use of visible light for optogenetic stimulation is invasive due to low penetration depth and tissue damage owing to larger absorption and scattering. Here, we report, for the first time, in-depth non-scanning fiber-optic two-photon optogenetic stimulation (FO-TPOS) of neurons in-vivo in transgenic mouse models.
View Article and Find Full Text PDF