Publications by authors named "Kamal E H El Tahir"

A new series, 2-substituted mercapto-3-[2-(pyridin-2-yl)ethyl]-4(3H)-quinazolinone 1-21, was synthesized and evaluated for in vivo anti-inflammatory and analgesic activities and in vitro COX-1/COX-2 inhibition. Compounds 1, 4, 5, 6, 8, 10, 13, 14, 15, 16, and 17 exhibited potent anti-inflammatory and analgesic properties, with ED50 values of 50.3-112.

View Article and Find Full Text PDF

A new series of 2-substituted mercapto-4(3H)-quinazolinone 1-26 were synthesized and assessed for in vivo anti-inflammatory and analgesic activities and in vitro inhibition of cyclooxygenase COX-1/COX-2. A new series of 2-substituted mercapto-4(3H)-quinazolinone 1-26 were synthesized and assessed for in vivo anti-inflammatory and analgesic activities. The potent anti-inflammatory compounds were subjected to in vitro cyclooxygenase COX-1/COX-2 inhibition assays.

View Article and Find Full Text PDF

Design, synthesis and pharmacological activities of a group of 1,3,5-trisubstituted pyrazolines were reported. The chemical structures of the synthesized compounds have been assigned on the basis of IR, MS, (1)H NMR, and (13)C NMR spectral analyses. The synthesized 1,3,5-trisubstituted pyrazoline derivatives were evaluated in vivo for anti-inflammatory, analgesic activities and in vitro for COX-1/2 inhibition assay.

View Article and Find Full Text PDF

The design, synthesis and pharmacological activities of a group of 5,5-diphenylimidazolidine-2,4-dione bearing anilide, phenacyl and benzylidene fragments 2-27 were reported. The prepared 5,5-diphenylimidazolidine-2,4-dione derivatives were evaluated in vivo for anti-inflammatory, analgesic activities and in vitro for COX-1/2 inhibition assay. Among the tested compounds, derivatives 5, 9, 10, 13, and 14 showed significant and potent anti-inflammatory and analgesic activities almost equivalent to reference drug celecoxib.

View Article and Find Full Text PDF

A group of 30 cyclic imides (1-10a-c) was designed for evaluation as a selective COX-2 inhibitor and investigated in vivo for anti-inflammatory and analgesic activities. Compounds 6a, 6b, 7a and 7b exhibit optimal COX-2 inhibitory potency (IC50 = 0.18, 0.

View Article and Find Full Text PDF

The reaction of arylsulfones 11a-d with hydrazonoyl chloride derivative 13 furnished celecoxib analogs 4-(3-acetyl-5-aryl-4-(arylsulfonyl)-1H-pyrazol-1-yl)benzenesulfonamides 15a-d, respectively. Oximes 16a, b and hydrazones 17a, b were prepared by reacting sulfones 11a, b with hydroxyl amine and phenyl hydrazine, respectively. The anti-inflammatory activity of the synthesized compounds showed that, 5-(4-bromophenyl)-4-(phenylsulfonyl)pyrazole 15c and 5-(4-bromophenyl)-4-(4-tolylsulfonyl)pyrazole 15d exhibited excellent anti-inflammatory activity with ED50 = 68 ± 2.

View Article and Find Full Text PDF

Background: The present study describes the tracheorelaxant and anti-inflammatory effects of Polygonatum verticillatum which may support its medicinal use in hyperactive airway complaints and inflammatory disorders.

Methods: The tracheorelaxant activity of crude extract of the rhizomes of P. verticillatum (PR) was assessed in isolated guinea-pig tracheal tissues immersed in tissue organ bath filled with Tyrode's solution and a continuous supply of carbogen gas (95% O2 and 5% CO2).

View Article and Find Full Text PDF

Thirty-one new theophylline derivatives have been synthesized and evaluated for their hypoglycemic activity. Compounds 24 (56% reduction) and 31 (57% reduction) showed better hypoglycemic activity than the standard drug glibenclamide which showed 52% reduction in serum glucose level. Compound 27 remarkably reduced serum glucose level by 53%.

View Article and Find Full Text PDF

A group of cyclic imides (1-10) was designed for evaluation as a selective COX-2 inhibitors and investigated in vivo for their anti-inflammatory activity. Compounds 6a, 6b, 8a, 8b, 9a, 9b, 10a and 10b were proved to be potent COX-2 inhibitors with IC50 range of 0.1-4.

View Article and Find Full Text PDF

The synthesis of several 4-phenyl-5-pyridin-4-yl-2,3-dihydro-3H-1,2,4-triazole-3-thiones possessing N-2 Mannich bases or S-alkyl substituents, is reported. Several of them exhibited a low nanomolar COX enzyme inhibition activity. Most of the compounds showed inhibition of edema was similar to that evoked by celocoxib in animal model.

View Article and Find Full Text PDF

Two new flavane gallates were isolated from the leaves of Plicosepalus curviflorus. The structure of the new compounds was established as 2S,3R-3,3',4',5,7-pentahydroxyflavane-5-O-gallate (1) and 2S,3R-3,3',4',5,5',7-hexahydroxyflavane-4',5-di-O-gallate (2), respectively. In addition, seven known compounds (-)-catechin (3), quercetin (4), lupeol (5), β-sitosterol (6), pomolic acid (7), β-sitosterol 3-O-β-d-glucopyranoside (8) and 4-methoxycinnamic acid (9) were reported for the first time from the genus Plicosepalus.

View Article and Find Full Text PDF

New pyrazole and pyrazoline derivatives have been synthesized and their ability to inhibit ovine COX-1/COX-2 isozymes was evaluated using in vitro cyclooxygenase (COX) inhibition assay. Among the tested compounds, N-((5-(4-chlorophenyl)-1-phenyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)methylene)-3,5-bis(trifluoromethyl)aniline 8d exhibit optimal COX-2 inhibitory potency (IC(50)=0.26 lM) and selectivity (SI)=>192.

View Article and Find Full Text PDF

A group of cyclic imides (1-13) was designed for evaluation as selective COX-2 inhibitors and investigated in vivo for their anti-inflammatory activities using carrageenan-induced rat paw edema model. Compounds 5b, 6b, 11b, 11c, 12b and 12c were proved to be potent COX-2 inhibitors with IC50 range of 0.1-1.

View Article and Find Full Text PDF

Two series of some new 2,4,6-trisubstituted-quinazoline derivatives were prepared and screened for their analgesic, anti-inflammatory activity and acute toxicity. Four compounds were more potent analgesic agents than the reference drug Indomethacin and thirteen compounds showed significant anti-inflammatory activity. Seven compounds showed combined ability to inhibit both pain and inflammation.

View Article and Find Full Text PDF