Derived from the notion of algorithmic bias, it is possible that creating user segments such as personas from data results in over- or under-representing certain segments (FAIRNESS), does not properly represent the diversity of the user populations (DIVERSITY), or produces inconsistent results when hyperparameters are changed (CONSISTENCY). Collecting user data on 363M video views from a global news and media organization, we compare personas created from this data using different algorithms. Results indicate that the algorithms fall into two groups: those that generate personas with and those that generate personas with .
View Article and Find Full Text PDF