The aging process induces a variety of changes in the brain detectable by magnetic resonance imaging (MRI). These changes include alterations in brain volume, fluid-attenuated inversion recovery (FLAIR) white matter hyperintense lesions, and variations in tissue properties such as relaxivity, myelin, iron content, neurite density, and other microstructures. Each MRI technique offers unique insights into the structural and compositional changes occurring in the brain due to normal aging or neurodegenerative diseases.
View Article and Find Full Text PDFVentricular tachycardia (VT) is a severe arrhythmia commonly treated with implantable cardioverter defibrillators, antiarrhythmic drugs and catheter ablation (CA). Although CA is effective in reducing recurrent VT, its impact on survival remains uncertain, especially in patients with extensive scarring. Stereotactic arrhythmia radioablation (STAR) has emerged as a novel treatment for VT in patients unresponsive to CA, leveraging techniques from stereotactic body radiation therapy used in cancer treatments.
View Article and Find Full Text PDFThis study included 52 Japanese older adults with Pittsburgh Sleep Quality Index (PSQI) scores > 5 and 52 healthy controls (HCs) with PSQI score ≤ 5. Diffusion-weighted imaging (DWI) and 3D T1-weighted imaging were acquired using 3T magnetic resonance imaging. The diffusion tensor image analysis along the perivascular space (DTI-ALPS) index was calculated using preprocessed DWI.
View Article and Find Full Text PDFIn this narrative review, we review the applications of artificial intelligence (AI) into clinical magnetic resonance imaging (MRI) exams, with a particular focus on Japan's contributions to this field. In the first part of the review, we introduce the various applications of AI in optimizing different aspects of the MRI process, including scan protocols, patient preparation, image acquisition, image reconstruction, and postprocessing techniques. Additionally, we examine AI's growing influence in clinical decision-making, particularly in areas such as segmentation, radiation therapy planning, and reporting assistance.
View Article and Find Full Text PDFMagn Reson Med Sci
October 2024
The integration of deep learning (DL) in breast MRI has revolutionized the field of medical imaging, notably enhancing diagnostic accuracy and efficiency. This review discusses the substantial influence of DL technologies across various facets of breast MRI, including image reconstruction, classification, object detection, segmentation, and prediction of clinical outcomes such as response to neoadjuvant chemotherapy and recurrence of breast cancer. Utilizing sophisticated models such as convolutional neural networks, recurrent neural networks, and generative adversarial networks, DL has improved image quality and precision, enabling more accurate differentiation between benign and malignant lesions and providing deeper insights into disease behavior and treatment responses.
View Article and Find Full Text PDFA nucleoid protein Cren7 compacts DNA, contributing to the living of Crenarchaeum in high temperature environment. In this study, we investigated the dynamic behavior of Cren7 on DNA and its functional relation using single-molecule fluorescence microscopy. We found two mobility modes of Cren7, sliding along DNA and pausing on it, and the rapid dissociation kinetics from DNA.
View Article and Find Full Text PDFPsychiatry Clin Neurosci
October 2024
Background And Objectives: Integrating large language models (LLMs) such as GPT-4 Turbo into diagnostic imaging faces a significant challenge, with current misdiagnosis rates ranging from 30-50%. This study evaluates how prompt engineering and confidence thresholds can improve diagnostic accuracy in neuroradiology.
Methods: We analyze 751 neuroradiology cases from the American Journal of Neuroradiology using GPT-4 Turbo with customized prompts to improve diagnostic precision.
Int J Comput Assist Radiol Surg
November 2024
Objective and background This study aimed to develop a deep convolutional neural network (DCNN) model capable of generating synthetic 4D magnetic resonance angiography (MRA) from 3D time-of-flight (TOF) images, allowing estimation of temporal changes in arterial flow. TOF MRA provides static information about arterial structures through maximum intensity projection (MIP) processing, but it does not capture the dynamic information of contrast agent circulation, which is lost during MIP processing. Considering the principles of TOF, it is hypothesized that dynamic information about arterial blood flow is latent within TOF signals.
View Article and Find Full Text PDFBrain-computer interfaces (BCI) enable direct communication between the brain and a computer or other external devices. They can extend a person's degree of freedom by either strengthening or substituting the human peripheral working capacity. Moreover, their potential clinical applications in medical fields include rehabilitation, affective computing, communication, and control.
View Article and Find Full Text PDFMoyamoya disease (MMD) causes cerebral arterial stenosis and hemodynamic disturbance, the latter of which may disrupt glymphatic system activity, the waste clearance system. We evaluated 46 adult patients with MMD and 33 age- and sex-matched controls using diffusivity along the perivascular space (ALPS) measured with diffusion tensor imaging (ALPS index), which may partly reflect glymphatic system activity, and multishell diffusion MRI to generate freewater maps. Twenty-three patients were also evaluated via O-gas positron emission tomography (PET), and all patients underwent cognitive tests.
View Article and Find Full Text PDFCognitive dysfunction, especially memory impairment, is a typical clinical feature of long-term symptoms caused by repetitive mild traumatic brain injury (rmTBI). The current study aims to investigate the relationship between regional brain atrophy and cognitive impairments in retired athletes with a long history of rmTBI. Overall, 27 retired athletes with a history of rmTBI (18 boxers, 3 kickboxers, 2 wrestlers, and 4 others; rmTBI group) and 23 age/sex-matched healthy participants (control group) were enrolled.
View Article and Find Full Text PDFBackground And Purpose: Glymphatic system in type 2 diabetes mellitus (T2DM) but not in the prodrome, prediabetes (Pre-DM) was investigated using diffusion tensor image analysis along the perivascular space (DTI-ALPS). Association between glymphatic system and insulin resistance of prominent characteristic in T2DM and Pre-DM between is yet elucidated. Therefore, this study delves into the interstitial fluid dynamics using the DTI-ALPS in both Pre-DM and T2DM and association with insulin resistance.
View Article and Find Full Text PDFNeuroinflammation contributes to the pathology and progression of Alzheimer's disease (AD), and it can be observed even with mild cognitive impairment (MCI), a prodromal phase of AD. Free water (FW) imaging estimates the extracellular water content and has been used to study neuroinflammation across several neurological diseases including AD. Recently, the role of gut microbiota has been implicated in the pathogenesis of AD.
View Article and Find Full Text PDF