Publications by authors named "Kam-Wing Ling"

The spatial regulation of combinatorial expression of Hox genes is critical for determining hindbrain rhombomere (r) identities. To address the cross-regulatory relationship between Hox genes in hindbrain neuronal specification, we have generated a gain-of-function transgenic mouse mutant Hoxb3(Tg) using the Hoxb2 r4-specific enhancer element. Interestingly, in r4 of the Hoxb3(Tg) mutant where Hoxb3 was ectopically expressed, the expression of Hoxb1 was specifically abolished.

View Article and Find Full Text PDF

Clinical responses of solid tumors after allogeneic human leukocyte antigen-matched stem cell transplantation (SCT) often coincide with severe graft-versus-host disease (GVHD). Targeting minor histocompatibility antigens (mHags) with hematopoiesis- and cancer-restricted expression, for example, HA-1, may allow boosting the antitumor effect of allogeneic SCT without risking severe GVHD. The mHag HA-1 is aberrantly expressed in cancers of most entities.

View Article and Find Full Text PDF

The 11-zinc finger protein CCCTC-binding factor (CTCF) is a highly conserved protein, involved in imprinting, long-range chromatin interactions and transcription. To investigate its function in vivo, we generated mice with a conditional Ctcf knockout allele. Consistent with a previous report, we find that ubiquitous ablation of the Ctcf gene results in early embryonic lethality.

View Article and Find Full Text PDF

Gata transcription factors are critical regulators of proliferation and differentiation implicated in various human cancers, but specific genes activated by Gata proteins remain to be identified. We previously reported that enforced expression of Gata3 during T cell development in CD2-Gata3 transgenic mice induced CD4(+)CD8(+) double-positive (DP) T cell lymphoma. Here, we show that the presence of the DO11.

View Article and Find Full Text PDF

The transcription factor GATA3 is essential at multiple stages of T cell development, including the earliest double-negative stages, beta-selection and CD4 single-positive thymocytes. Here, we show that in CD2-GATA3 transgenic mice, with enforced GATA3 expression driven by the CD2 promoter, thymocytes have reduced levels of CD5, which is a negative regulator of TCR signaling participating in TCR repertoire fine-tuning. Reduction of CD5 expression was most prominent in CD4(+)CD8(+) double-positive (DP) cells and was associated with increased levels of the transcription factor E2A.

View Article and Find Full Text PDF

Background And Objectives: The first hematopoietic stem cells (HSC) in the mouse able to give rise to the adult hematopoietic system emerge at embryonic day (E) 10.5 in the intraembryonic aorta-gonads-mesonephros (AGM) region, as demonstrated by transplantation into irradiated adult recipients. It has been shown by transplantation into conditioned neonatal or hematopoietic mutant adult recipients that less potent multipotential hematopoietic progenitors exist in the mouse embryo at E9, one day earlier than the appearance of HSC.

View Article and Find Full Text PDF

GATA-2 is an essential transcription factor in the hematopoietic system that is expressed in hematopoietic stem cells (HSCs) and progenitors. Complete deficiency of GATA-2 in the mouse leads to severe anemia and embryonic lethality. The role of GATA-2 and dosage effects of this transcription factor in HSC development within the embryo and adult are largely unexplored.

View Article and Find Full Text PDF

As the zinc-finger transcription factor specificity protein 3 (Sp3) has been implicated in the regulation of many hematopoietic-specific genes, we analyzed the role of Sp3 in hematopoiesis. At embryonic day 18.5 (E18.

View Article and Find Full Text PDF

During embryogenesis there is a sequential, temporal appearance of increasingly more-complex hematopoietic cells beginning with unipotential progenitors, proceeding to multipotential (myeloid, erythroid and lymphoid) progenitors and culminating with adult-repopulating hematopoietic stem cells. Current research has established an important role for the aorta-gonads-mesonephros region of the mouse embryo in the generation of multipotential progenitors and hematopoietic stem cells. Comparisons of normal and hematopoietic-cell-mutant mouse embryos have revealed several genes pivotal in hematopoietic stem cell generation/function.

View Article and Find Full Text PDF