Identifying Hoxc8 target genes is at the crux of understanding the Hoxc8-mediated regulatory networks underlying its roles during development. However, identification of these genes remains difficult due to intrinsic factors of Hoxc8, such as low DNA binding specificity, context-dependent regulation, and unknown cofactors. Therefore, as an alternative, the present study attempted to test whether the roles of Hoxc8 could be inferred by simply analyzing genes frequently coexpressed with Hoxc8, and whether these genes include putative target genes.
View Article and Find Full Text PDFSox11 deletion mice are known to exhibit developmental defects of craniofacial skeletal malformations, asplenia, and hypoplasia of the lung, stomach, and pancreas. Despite the importance of Sox11 in the developing skeleton, the role of Sox11 in osteogenesis has not been studied yet. In this study, we identified that Sox11 is an important transcription factor for regulating the proliferation and survival of osteoblast precursor cells as well as the self-renewal potency of mesenchymal progenitor cells via up-regulation of Tead2.
View Article and Find Full Text PDFHoxc8 is a homeobox gene family member, which is essential for growth and differentiation. Mgl1, a mouse homologue of the Drosophila tumor suppressor gene lgl, was previously identified as a possible target of Hoxc8. However, the biological effects and underlying molecular mechanism of Hoxc8 regulation on Mgl1 has not been fully established.
View Article and Find Full Text PDFProtein transduction domains (PTDs) have been shown to cross the biological cell membranes efficiently through a receptor and energy independent mechanism. Because of its ease in membrane transducing ability, PTDs could be used as a gene delivery vector. Since we already have shown that purified Hoxc8 homeoprotein has the ability to cross the cellular membrane, we analyzed the possibility of the third helix of the Hoxc8 homeodomain as a useful gene delivery vector.
View Article and Find Full Text PDF