This article presents new spectroscopic results in standoff chemical detection that are enabled by monolithic arrays of Distributed Feedback (DFB) Quantum Cascade Lasers (QCLs), with each array element at a slightly different wavelength than its neighbor. The standoff analysis of analyte/substrate pairs requires a laser source with characteristics offered uniquely by a QCL Array. This is particularly true for time-evolving liquid chemical warfare agent (CWA) analysis.
View Article and Find Full Text PDFAssessing the adequacy of oxygen delivery to tissues is vital, particularly in the fields of intensive care medicine and surgery. As oxygen delivery to a cell becomes deficient, changes in mitochondrial redox state precede changes in cellular function. We describe a technique for the continuous monitoring of the mitochondrial redox state on the epicardial surface using resonance Raman spectroscopy.
View Article and Find Full Text PDFX-ray scattering has played a key role in non-destructive materials characterization due to the material-specific coherent scattering signatures. In the current energy dispersive coherent scatter imaging systems, including selected volume tomography and coherent scatter computed tomography, each object voxel is measured at a single scatter angle, which suffers from slow acquisition time. The employment of coded apertures in x-ray scatter imaging systems improves the photon collection efficiency, making it promising for real time volumetric imaging and material identification.
View Article and Find Full Text PDFWe present a method for realizing snapshot, depth-resolved material identification using only a single, energy-sensitive pixel. To achieve this result, we employ a coded aperture with subpixel features to modulate the energy spectrum of coherently scattered photons and recover the object properties using an iterative inversion algorithm based on compressed sensing theory. We demonstrate high-fidelity object estimation at x-ray wavelengths for a variety of compression ratios exceeding unity.
View Article and Find Full Text PDFTomographic imaging of the molecular structure of an object is important for a variety of applications, ranging from medical and industrial radiography to security screening. X-ray diffraction imaging is the preeminent technique for performing molecular analysis of large volumes. Here we propose and demonstrate a new measurement architecture to improve the source and detector efficiency for diffraction imaging.
View Article and Find Full Text PDFWe demonstrate a technique for measuring the range-resolved coherent scatter form factors of different objects from a single snapshot. By illuminating the object with an x-ray pencil beam and placing a coded aperture in front of a linear array of energy-sensitive detector elements, we record the coherently scattered x-rays. This approach yields lateral, range, and momentum transfer resolutions of 1 mm, 5 mm, and 0.
View Article and Find Full Text PDF