Am J Physiol Endocrinol Metab
December 2013
Hearts utilize fatty acids as a primary source of energy. The sources of those lipids include free fatty acids and lipoprotein triglycerides. Deletion of the primary triglyceride-hydrolyzing enzyme lipoprotein lipase (LPL) leads to cardiac dysfunction.
View Article and Find Full Text PDFAdipose fat storage is thought to require uptake of circulating triglyceride (TG)-derived fatty acids via lipoprotein lipase (LpL). To determine how LpL affects the biology of adipose tissue, we created adipose-specific LpL knock-out (ATLO) mice, and we compared them with whole body LpL knock-out mice rescued with muscle LpL expression (MCK/L0) and wild type (WT) mice. ATLO LpL mRNA and activity were reduced, respectively, 75 and 70% in gonadal adipose tissue (GAT), 90 and 80% in subcutaneous tissue, and 84 and 85% in brown adipose tissue (BAT).
View Article and Find Full Text PDFAlcohol, a major cause of human cardiomyopathy, decreases cardiac contractility in both animals and man. However, key features of alcohol-related human heart disease are not consistently reproduced in animal models. Accordingly, we studied cardiac histology, contractile function, cardiomyocyte long chain fatty acid (LCFA) uptake, and gene expression in male C57BL/6J mice consuming 0, 10, 14, or 18% ethanol in drinking water for 3months.
View Article and Find Full Text PDFAdipocytes express angiotensin receptors, but the direct effects of angiotensin II (AngII) stimulating this cell type are undefined. Adipocytes express angiotensin type 1a receptor (AT1aR) and AT2R, both of which have been implicated in obesity. In this study, we determined the effects of adipocyte AT1aR deficiency on adipocyte differentiation and the development of obesity in mice fed low-fat (LF) or high-fat (HF) diets.
View Article and Find Full Text PDFThe role of serine palmitoyltransferase (SPT) and de novo ceramide biosynthesis in cardiac ceramide and sphingomyelin metabolism is unclear. To determine whether the de novo synthetic pathways, rather than ceramide uptake from circulating lipoproteins, is important for heart ceramide levels, we created cardiomyocyte-specific deficiency of Sptlc2, a subunit of SPT. Heart-specific Sptlc2-deficient (hSptlc2 KO) mice had a >35% reduction in ceramide, which was limited to C18:0 and very long chain ceramides.
View Article and Find Full Text PDFUnlabelled: Nonalcoholic fatty liver disease (NAFLD) and insulin resistance have recently been found to be associated with increased plasma concentrations of apolipoprotein CIII (APOC3) in humans carrying single nucleotide polymorphisms within the insulin response element of the APOC3 gene. To examine whether increased expression of APOC3 would predispose mice to NAFLD and hepatic insulin resistance, human APOC3 overexpressing (ApoC3Tg) mice were metabolically phenotyped following either a regular chow or high-fat diet (HFD). After HFD feeding, ApoC3Tg mice had increased hepatic triglyceride accumulation, which was associated with cellular ballooning and inflammatory changes.
View Article and Find Full Text PDFDiacylglycerol (DAG) acyl transferase 1 (Dgat1) knockout ((-/-)) mice are resistant to high-fat-induced obesity and insulin resistance, but the reasons are unclear. Dgat1(-/-) mice had reduced mRNA levels of all three Ppar genes and genes involved in fatty acid oxidation in the myocardium of Dgat1(-/-) mice. Although DGAT1 converts DAG to triglyceride (TG), tissue levels of DAG were not increased in Dgat1(-/-) mice.
View Article and Find Full Text PDFFree fatty acids (FFAs) suppress appetite when injected into the hypothalamus. To examine whether lipoprotein lipase (LPL), a serine hydrolase that releases FFAs from circulating triglyceride (TG)-rich lipoproteins, might contribute to FFA-mediated signaling in the brain, we created neuron-specific LPL-deficient mice. Homozygous mutant (NEXLPL-/-) mice were hyperphagic and became obese by 16 weeks of age.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
March 2011
Normal hearts have increased contractility in response to catecholamines. Because several lipids activate PKCs, we hypothesized that excess cellular lipids would inhibit cardiomyocyte responsiveness to adrenergic stimuli. Cardiomyocytes treated with saturated free fatty acids, ceramide, and diacylglycerol had reduced cellular cAMP response to isoproterenol.
View Article and Find Full Text PDFLipids circulate in the blood in association with plasma lipoproteins and enter the tissues either after hydrolysis or as non-hydrolyzable lipid esters. We studied cardiac lipids, lipoprotein lipid uptake, and gene expression in heart-specific lipoprotein lipase (LpL) knock-out (hLpL0), CD36 knock-out (Cd36(-/-)), and double knock-out (hLpL0/Cd36(-/-)-DKO) mice. Loss of either LpL or CD36 led to a significant reduction in heart total fatty acyl-CoA (control, 99.
View Article and Find Full Text PDFBackground: Emerging evidence in obesity and diabetes mellitus demonstrates that excessive myocardial fatty acid uptake and oxidation contribute to cardiac dysfunction. Transgenic mice with cardiac-specific overexpression of the fatty acid-activated nuclear receptor peroxisome proliferator-activated receptor-alpha (myosin heavy chain [MHC]-PPARalpha mice) exhibit phenotypic features of the diabetic heart, which are rescued by deletion of CD36, a fatty acid transporter, despite persistent activation of PPARalpha gene targets involved in fatty acid oxidation.
Methods And Results: To further define the source of fatty acid that leads to cardiomyopathy associated with lipid excess, we crossed MHC-PPARalpha mice with mice deficient for cardiac lipoprotein lipase (hsLpLko).
Intracellular lipid accumulation in the heart is associated with cardiomyopathy, yet the precise role of triglyceride (TG) remains unclear. With exercise, wild type hearts develop physiologic hypertrophy. This was associated with greater TG stores and a marked induction of the TG-synthesizing enzyme diacylglycerol (DAG) acyltransferase 1 (DGAT1).
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
September 2008
Fatty acids (FAs) are acquired from free FA associated with albumin and lipoprotein triglyceride that is hydrolyzed by lipoprotein lipase (LpL). Hypertrophied hearts shift their substrate usage pattern to more glucose and less FA. However, FAs may still be an important source of energy in hypertrophied hearts.
View Article and Find Full Text PDF