Publications by authors named "Kalyani D Asgaonkar"

Introduction: Cancer is a leading cause of death worldwide, driving the urgent need for new and effective treatments. Benzimidazole and pyrazole derivatives have gained attention for their potential as anticancer agents due to their diverse biological activities. The development of resistance in cancer cells, toxicity concerns, and inconsistent efficacy across different types of cancer are a few of the challenges.

View Article and Find Full Text PDF

Background: Inhibiting receptor-tyrosine-kinase (RTK) signalling pathways has emerged as a key focus of novel cancer therapy development. Vascular endothelial growth factor receptor (VEGFR) is a member of the RTK family and is required for vasculogenesis and angiogenesis. Because VEGFR 2 is the subtype responsible for cellular angiogenesis and vasculogenesis, blocking it will impair tumour cell blood supply, reducing their development, proliferation, and metastasis.

View Article and Find Full Text PDF

Background: A defence mechanism of the body includes inflammation. It is a process through which the immune system identifies, rejects, and starts to repair foreign and damaging stimuli. In the world, chronic inflammatory disorders are the leading cause of death.

View Article and Find Full Text PDF

Background: Every year Invasive Fungal Infections (IFI) are globally affecting millions of people. have been reported as the most infectious and mortality-inducing fungal strains among all pathogenic fungi.

Aims & Objectives: To tackle this problem in the current study Pyranopyrazoles and Pyrazolopyrano- pyrimidine derivatives were developed using molecular hybridization, green chemistry and one-pot multicomponent reaction.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation of the joints, leading to pain, swelling, and joint deformity. Effective management of RA involves the use of disease-modifying drugs that can slow down disease progression and alleviate symptoms. Among the potential targets for RA treatment is Bruton's tyrosine kinase (BTK), which plays a crucial role in B-cell signalling and contributes to the pathogenesis of RA.

View Article and Find Full Text PDF

Targeting Hec1/Nek2 is considered as crucial target for cancer treatment due to its significant role in cell proliferation. In pursuit of this, a series of twenty-five 2-aminothiazoles derivatives, along with their Hec1/Nek2 inhibitory activities were subjected to QSAR studies utilizing QSARINS software. The significant three descriptor QSAR model was generated, showing noteworthy statistical parameters: a correlation coefficient of cross validation leave one out (Q) = 0.

View Article and Find Full Text PDF

Background: Entry inhibitors prevent the binding of human immunodeficiency virus protein to the chemokine receptor CXCR4 and are used along with conventional anti-HIV therapy. They aid in restoring immunity and can prevent the development of HIV-TB co-infection.

Aims: In the present study, various thiazolidinone-pyrazine derivatives earlier studied for NNRT inhibition activity were gauged for their entry inhibitor potential.

View Article and Find Full Text PDF

Background: Diarylquinolines like Bedaquiline have shown promising antitubercular activity by their action of Mycobacterial ATPase.

Objective: The structural features necessary for a good antitubercular activity for a series of quinoline derivatives were explored through computational chemistry tools like QSAR and combinatorial library generation. In the current study, 3-Chloro-4-(2-mercaptoquinoline-3-yl)-1- substitutedphenylazitidin-2-one derivatives have been designed and synthesized based on molecular modeling studies as anti-tubercular agents.

View Article and Find Full Text PDF

Background: Management of Co-existence of Acquired immunodeficiency syndrome and Tuberculosis has become a global challenge due to the emergence of resistant strains and pill burden.

Objective: Hence the aim of the present work was to design and evaluate compounds for their dual activity on HIV-1 and Tuberculosis (TB).

Methods: A series of seven, novel Thiazolidin-4-one derivatives were synthesized and evaluated for their anti-HIV and anti-tubercular activity along with Molecular docking studies.

View Article and Find Full Text PDF

Background: Acquired immunodeficiency Syndrome (AIDS) is caused by Human immunodeficiency virus type 1 (HIV-1). Pyrazine and Thiazolidinone pharmacophore has diverse biological activities including anti HIV activity.

Aims And Objectives: To study binding behavior of Pyrazine- thiazolidinone derivatives on four different crystal structures of HIV- 1RT.

View Article and Find Full Text PDF

The enzyme - enoyl acyl carrier protein reductase (enoyl ACP reductase) is a validated target for antitubercular activity. Inhibition of this enzyme interferes with mycolic acid synthesis which is crucial for Mycobacterium tuberculosis cell growth. In the present work 2D and 3D quantitative structure activity relationship (QSAR) studies were carried out on a series of thiazinan-Isoniazid pharmacophore to design newer analogues.

View Article and Find Full Text PDF

Tuberculosis (TB) has been declared as a health emergency due to emergence of resistant strains of M. tuberculosis, multidrug resistant (MDR), extensively drug resistant (XDR) TB strains and totally drug resistant tuberculosis (TDR-TB) reported recently in some parts of the world. Therefore, the current situation necessitates developing new antitubercular agents acting on novel targets for effectively controlling TB.

View Article and Find Full Text PDF

A novel polymer in the form of a thiolated derivative of natural tamarind seed polysaccharide or xyloglucan was synthesized and its chacteristics as a mucoadhesive polymer were studied as a part of the study undertaken herein. The synthetic route followed involves a two-step reaction mechanism of firstly oxidizing xyloglucan and then further conjugating it with l-cysteine to form thiolated xyloglucan or thiomer via imine linkage. The thiomer thus formed was characterized using various analytical techniques as differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), and nuclear magnetic resonance (NMR).

View Article and Find Full Text PDF

A quantitative structure-activity relationship model was developed on a series of compounds containing oxadiazole-ligated pyrrole pharmacophore to identify key structural fragments required for anti-tubercular activity. Two-dimensional (2D) and three-dimensional (3D) QSAR studies were performed using multiple linear regression (MLR) analysis and k-nearest neighbour molecular field analysis (kNN-MFA), respectively. The developed QSAR models were found to be statistically significant with respect to training, cross-validation, and external validation.

View Article and Find Full Text PDF