Publications by authors named "Kalyaneswar Mandal"

Tetra-benzimidazole rotors flanking a divinyl-phenothiazine stator are realized as red AIEgens and newly identified as efficient aza-Michael acceptors for the identification of biogenic amine vapors. Weakly red-emissive solids display a blue-shifted turn-on emission by rapid aza-Michael addition and simultaneous reverse Knoevenagel reactions. Concentration variation imposes better crystallinity and facilitates radiative decay, offering distinct emissions.

View Article and Find Full Text PDF

We describe rational chemical engineering to enhance the proteolytic stability of a chimeric peptide using a combination of unique strategies that involve the incorporation of a series of d-amino acids into the parent l-peptide sequence and restricting the conformational freedom of the peptide by covalent stitching. We hypothesize that replacing a stretch of sequence of an unstructured peptide motif with d-amino acids would increase its proteolytic stability without significantly affecting its affinity to the target protein. Also, considering the C-C distances, replacing an appropriate pair of residues with cysteine to form an additional disulfide bond in the molecule would provide additional stability to the engineered peptide.

View Article and Find Full Text PDF

The movement of molecules (i.e. diffusion) within angstrom-scale pores of porous materials such as metal-organic frameworks (MOFs) and zeolites is influenced by multiple complex factors that can be challenging to assess and manipulate.

View Article and Find Full Text PDF

The negligible cytotoxicity of anion surface-linked dendrons makes glutamic acid-based dendrons a potential candidate for materials and biological applications. Despite the inherent drawbacks of the conventional solution phase synthesis of glutamic acid-based dendrons, there have been no advancements in these protocols. Herein, we demonstrate the first-ever convergent solid phase synthesis of dendrons, up to fourth generation, having glutamic acid branching points produced by preactivation of dicarboxylic acid groups with -hydroxysuccinimide and simultaneous coupling with amine groups of two growing peptide chains, with excellent yields (30-70%).

View Article and Find Full Text PDF

Background: The aortic endothelium is crucial in preserving vascular tone through endothelium-derived vasodilators and vasoconstrictors. Dysfunction in the endothelium is an early indicator of cardiovascular diseases. Our study explores the therapeutic potential of a dual-acting peptide (DAP) to co-activate Mas and pGCA receptors and restore the balance between vasodilators and vasoconstrictors on endothelial dysfunction in DOCA-salt-induced hypertensive rats.

View Article and Find Full Text PDF

SARS-CoV-2 and its global spread have created an unprecedented public health crisis. The spike protein of SARS-CoV-2 has gained significant attention due to its crucial role in viral entry into host cells and its potential as both a prophylactic and a target for therapeutic interventions. Herein, we report the first successful total synthesis of the SARS-CoV-2 spike protein receptor binding domain (RBD), highlighting the key challenges and the strategies employed to overcome them.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) are associated with vascular smooth muscle cell (VSMC) and endothelial cell (EC) damage. Angiotensin1-7 (Ang1-7) and B-type natriuretic peptide (BNP) are responsible for vasodilation and regulation of blood flow. These protective effects of BNP are primarily mediated by the activation of sGCs/cGMP/cGKI pathway.

View Article and Find Full Text PDF

Over-activation of the renin-angiotensin-aldosterone system (RAAS) is a leading cause of cardio-renal complications. Oxidative stress is one of the major contributing factors in the over-activation of RAAS. Angiotensin-converting enzyme2/Angiotensin1-7/MasR and natriuretic peptide/particulate guanylyl cyclase receptor-A pathways play a key role in cardiorenal disease protection.

View Article and Find Full Text PDF

Intramolecular ion-pair interactions yield shape and functionality to many molecules. With proper orientation, these interactions overcome steric factors and are responsible for the compact structures of several peptides. In this study, we present a thermodynamic cycle based on isoelectronic and alchemical mutation to estimate the intramolecular ion-pair interaction energy.

View Article and Find Full Text PDF

Inhibiting the formation of a tight junction between two malaria parasite proteins, apical membrane antigen 1 and rhoptry neck protein 2, crucial for red blood cell invasion, prevents progression of the disease. In this work, we have used a unique approach to design a chimeric peptide, prepared by fusion of the best features of two peptide inhibitors, that has displayed parasite growth inhibition ex vivo with nanomolar IC , which is 100 times better than any of its parent peptides. Furthermore, to gain structural insights, we computationally modelled the hybrid peptide on its receptor.

View Article and Find Full Text PDF

Protein-folding can go wrong and , with significant consequences for the living organism and the pharmaceutical industry, respectively. Here we propose a design principle for small-peptide-based protein-specific folding modifiers. The principle is based on constructing a "xenonucleus", which is a prefolded peptide that mimics the folding nucleus of a protein.

View Article and Find Full Text PDF

This article highlights recent pioneering work by Günther et al. towards the discovery of potential repurposed antiviral compounds (peptidomimetic and non-peptidic) against the SARS-CoV-2 main protease (M ). The antiviral activity of the most potent drugs is discussed along with their binding mode to M as observed through X-ray crystallographic screening.

View Article and Find Full Text PDF

Apical membrane antigen 1 (AMA1) is a surface protein of that plays a crucial role in forming moving junction (MJ) during the invasion of human red blood cells. The obligatory presence of AMA1 in the parasite lifecycle designates this protein as a potential vaccine candidate and an essential target for the development of novel peptide or protein therapeutics. However, due to multiple cysteine residues in the protein sequence, attaining the native fold with correct disulfide linkages during the refolding process after expression in bacteria has remained challenging for years.

View Article and Find Full Text PDF

HIV-1 protease is indispensable for virus propagation and an important therapeutic target for antiviral inhibitors to treat AIDS. As such inhibitors are transition-state mimics, a detailed understanding of the enzyme mechanism is crucial for the development of better anti-HIV drugs. Here, we used room-temperature joint X-ray/neutron crystallography to directly visualize hydrogen atoms and map hydrogen bonding interactions in a protease complex with peptidomimetic inhibitor KVS-1 containing a reactive nonhydrolyzable ketomethylene isostere, which, upon reacting with the catalytic water molecule, is converted into a tetrahedral intermediate state, KVS-1.

View Article and Find Full Text PDF

We report an operationally simple method to facilitate chemical protein synthesis by fully convergent and one-pot native chemical ligations utilizing the fluorenylmethyloxycarbonyl (Fmoc) moiety as an N-masking group of the N-terminal cysteine of the middle peptide thioester segment(s). The Fmoc group is stable to the harsh oxidative conditions frequently used to generate peptide thioesters from peptide hydrazide or o-aminoanilide. The ready availability of Fmoc-Cys(Trt)-OH, which is routinely used in Fmoc solid-phase peptide synthesis, where the Fmoc group is pre-installed on cysteine residue, minimizes additional steps required for the temporary protection of the N-terminal cysteinyl peptides.

View Article and Find Full Text PDF

The thioester surrogate 3,4-diaminobenzoic acid (Dbz) facilitates the efficient synthesis of peptide thioesters by Fmoc chemistry solid phase peptide synthesis and the optional attachment of a solubility tag at the C-terminus. The protection of the partially deactivated -amine of Dbz is necessary to obtain contamination-free peptide synthesis. The reported carbamate protecting groups promote a serious side reaction, benzimidazolinone formation.

View Article and Find Full Text PDF

ShK toxin is a cysteine-rich 35-residue protein ion-channel ligand isolated from the sea anemone Stichodactyla helianthus. In this work, we studied the effect of inverting the side chain stereochemistry of individual Thr or Ile residues on the properties of the ShK protein. Molecular dynamics simulations were used to calculate the free energy cost of inverting the side-chain stereochemistry of individual Thr or Ile residues.

View Article and Find Full Text PDF

We have systematically explored three approaches based on 9-fluorenylmethoxycarbonyl (Fmoc) chemistry solid phase peptide synthesis (SPPS) for the total chemical synthesis of the key depsipeptide intermediate for the efficient total chemical synthesis of insulin. The approaches used were: stepwise Fmoc chemistry SPPS; the "hybrid method", in which maximally protected peptide segments made by Fmoc chemistry SPPS are condensed in solution; and, native chemical ligation using peptide-thioester segments generated by Fmoc chemistry SPPS. A key building block in all three approaches was a Glu[O-β-(Thr)] ester-linked dipeptide equipped with a set of orthogonal protecting groups compatible with Fmoc chemistry SPPS.

View Article and Find Full Text PDF

Ts3 is an alpha scorpion toxin from the venom of the Brazilian scorpion Tityus serrulatus. Ts3 binds to the domain IV voltage sensor of voltage-gated sodium channels (Nav ) and slows down their fast inactivation. The covalent structure of the Ts3 toxin is uncertain, and the structure of the folded protein molecule is unknown.

View Article and Find Full Text PDF

Polypeptides composed entirely of d-amino acids and the achiral amino acid glycine (d-proteins) inherently have in vivo properties that are proposed to be near-optimal for a large molecule therapeutic agent. Specifically, d-proteins are resistant to degradation by proteases and are anticipated to be nonimmunogenic. Furthermore, d-proteins are manufactured chemically and can be engineered to have other desirable properties, such as improved stability, affinity, and pharmacokinetics.

View Article and Find Full Text PDF

Isotope-edited two-dimensional Fourier transform infrared spectroscopy (2 D FTIR) can potentially provide a unique probe of protein structure and dynamics. However, general methods for the site-specific incorporation of stable (13) C=(18) O labels into the polypeptide backbone of the protein molecule have not yet been established. Here we describe, as a prototype for the incorporation of specific arrays of isotope labels, the total chemical synthesis-via a key ester insulin intermediate-of 97 % enriched [(1-(13) C=(18) O)Phe(B24) ] human insulin: stable-isotope labeled at a single backbone amide carbonyl.

View Article and Find Full Text PDF

As a part of a program aimed towards the study of the dynamics of human insulin-protein dimer formation using two-dimensional infrared spectroscopy, we used total chemical synthesis to prepare stable isotope labeled [(1-(13) C=(18) O)Phe(B24) )] human insulin, via [(1-(13) C=(18) O)Phe(B24) )] ester insulin as a key intermediate product that facilitates folding of the synthetic protein molecule (see preceding article). Here, we describe the crystal structure of the synthetic isotope-labeled ester insulin intermediate and the product synthetic human insulin. Additionally, we present our observations on hexamer formation with these two proteins in the absence of phenol derivatives and/or Zn metal ions.

View Article and Find Full Text PDF

Protein 3D structure can be a powerful predictor of function, but it often faces a critical roadblock at the crystallization step. Rv1738, a protein from Mycobacterium tuberculosis that is strongly implicated in the onset of nonreplicating persistence, and thereby latent tuberculosis, resisted extensive attempts at crystallization. Chemical synthesis of the L- and D-enantiomeric forms of Rv1738 enabled facile crystallization of the D/L-racemic mixture.

View Article and Find Full Text PDF

Our goal was to obtain the X-ray crystal structure of the glycosylated chemokine Ser-CCL1. Glycoproteins can be hard to crystallize because of the heterogeneity of the oligosaccharide (glycan) moiety. We used glycosylated Ser-CCL1 that had been prepared by total chemical synthesis as a homogeneous compound containing an N-linked asialo biantennary nonasaccharide glycan moiety of defined covalent structure.

View Article and Find Full Text PDF

CCL1 is a naturally glycosylated chemokine protein that is secreted by activated T-cells and acts as a chemoattractant for monocytes. Originally, CCL1 was identified as a 73 amino acid protein having one N-glycosylation site, and a variant 74 residue non-glycosylated form, Ser-CCL1, has also been described. There are no systematic studies of the effect of glycosylation on the biological activities of either CCL1 or Ser-CCL1.

View Article and Find Full Text PDF