Mutations in the RHO gene encoding for the visual pigment protein, rhodopsin, are among the most common cause of autosomal dominant retinitis pigmentosa (ADRP). Previous studies of ADRP mutations in different domains of rhodopsin have indicated that changes that lead to more instability in rhodopsin structure are responsible for more severe disease in patients. Here, we further test this hypothesis by comparing side-by-side and therefore quantitatively two RHO mutations, N15S and P23H, both located in the N-terminal intradiscal domain.
View Article and Find Full Text PDFThe chlorophyll-derivative chlorin e6 (Ce6) identified in the retinas of deep-sea ocean fish is proposed to play a functional role in red bioluminescence detection. Fluorescence and H NMR spectroscopy studies with the bovine dim-light photoreceptor, rhodopsin, indicate that Ce6 weakly binds to it with μm affinity. Absorbance spectra prove that red light sensitivity enhancement is not brought about by a shift in the absorbance maximum of rhodopsin.
View Article and Find Full Text PDFPerspectives on whether the functions of MAS, a G protein-coupled receptor, are beneficial or deleterious in the heart remain controversial. MAS gene knockout reduces coronary vasodilatation leading to ischemic injury. G protein signaling activated by MAS has been implicated in progression of adaptive cardiac hypertrophy to heart failure and fibrosis.
View Article and Find Full Text PDFAngiotensins are a group of hormonal peptides and include angiotensin II and angiotensin 1-7 produced by the renin angiotensin system. The biology, pharmacology and biochemistry of the receptors for angiotensins were extensively reviewed recently. In the review, the receptor nomenclature committee was not emphatic on designating MAS1 as the angiotensin 1-7 receptor on the basis of lack of classical G protein signalling and desensitization in response to angiotensin 1-7, as well as a lack of consensus on confirmatory ligand pharmacological analyses.
View Article and Find Full Text PDFPropagation of signals from G protein-coupled receptors (GPCRs) in cells is primarily mediated by protein-protein interactions. MAS is a GPCR that was initially discovered as an oncogene and is now known to play an important role in cardiovascular physiology. Current literature suggests that MAS interacts with common heterotrimeric G-proteins, but MAS interaction with proteins which might mediate G protein-independent or atypical signaling is unknown.
View Article and Find Full Text PDFAlthough interaction of a few G protein-coupled receptors (GPCRs) with Filamin A, a key actin cross-linking and biomechanical signal transducer protein, has been observed, a comprehensive structure-function analysis of this interaction is lacking. Through a systematic sequence-based analysis, we found that a conserved filamin binding motif is present in the cytoplasmic domains of >20% of the 824 GPCRs encoded in the human genome. Direct high-affinity interaction of filamin binding motif peptides of select GPCRs with the Ig domain of Filamin A was confirmed by nuclear magnetic resonance spectroscopy and isothermal titration calorimetric experiments.
View Article and Find Full Text PDFThe renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors.
View Article and Find Full Text PDFAngiotensin II type 1 receptor (AT(1)R) is a G protein-coupled receptor that serves as a primary regulator for blood pressure maintenance. Although several anti-hypertensive drugs have been developed as AT(1)R blockers (ARBs), the structural basis for AT(1)R ligand-binding and regulation has remained elusive, mostly due to the difficulties of growing high-quality crystals for structure determination using synchrotron radiation. By applying the recently developed method of serial femtosecond crystallography at an X-ray free-electron laser, we successfully determined the room-temperature crystal structure of the human AT(1)R in complex with its selective antagonist ZD7155 at 2.
View Article and Find Full Text PDFProtein phosphorylation mediates essentially all aspects of cellular life. In humans, this is achieved by ∼500 kinases, each recognizing a specific consensus motif (CM) in the substrates. The majority of CMs are surface-exposed and are thought to be accessible to kinases for phosphorylation.
View Article and Find Full Text PDFMAS is a G protein-coupled receptor (GPCR) implicated in multiple physiological processes. Several physiological peptide ligands such as angiotensin-(1-7), angiotensin fragments and neuropeptide FF (NPFF) are reported to act on MAS. Studies of conventional G protein signaling and receptor desensitization upon stimulation of MAS with the peptide ligands are limited so far.
View Article and Find Full Text PDFThe topology of the second extracellular loop (ECL2) and its interaction with ligands is unique in each G protein-coupled receptor. When the orthosteric ligand pocket located in the transmembrane (TM) domain is occupied, ligand-specific conformational changes occur in the ECL2. In more than 90% of G protein-coupled receptors, ECL2 is tethered to the third TM helix via a disulfide bond.
View Article and Find Full Text PDFIdentifying the functional motions of membrane proteins is difficult because they range from large-scale collective dynamics to local small atomic fluctuations at different timescales that are difficult to measure experimentally due to the hydrophobic nature of these proteins. Elastic Network Models, and in particular their most widely used implementation, the Anisotropic Network Model (ANM), have proven to be useful computational methods in many recent applications to predict membrane protein dynamics. These models are based on the premise that biomolecules possess intrinsic mechanical characteristics uniquely defined by their particular architectures.
View Article and Find Full Text PDFBackground: G protein coupled receptors (GPCRs) are seven helical transmembrane proteins that function as signal transducers. They bind ligands in their extracellular and transmembrane regions and activate cognate G proteins at their intracellular surface at the other side of the membrane. The relay of allosteric communication between the ligand binding site and the distant G protein binding site is poorly understood.
View Article and Find Full Text PDFMembrane receptor-activated signal transduction pathways are integral to cellular functions and disease mechanisms in humans. Identification of the full set of proteins interacting with membrane receptors by high-throughput experimental means is difficult because methods to directly identify protein interactions are largely not applicable to membrane proteins. Unlike prior approaches that attempted to predict the global human interactome, we used a computational strategy that only focused on discovering the interacting partners of human membrane receptors leading to improved results for these proteins.
View Article and Find Full Text PDFAnthocyanins are a class of phytochemicals that confer color to flowers, fruits, vegetables and leaves. They are part of our regular diet and serve as dietary supplements because of numerous health benefits, including improved vision. Recent studies have shown that the anthocyanin cyanidin-3-O-glucoside (C3G) increased regeneration of the dim-light photoreceptor rhodopsin (Matsumoto et al.
View Article and Find Full Text PDFAnthocyanins are a class of natural compounds common in flowers and vegetables. Because of the increasing preference of consumers for food containing natural colorants and the demonstrated beneficial effects of anthocyanins on human health, it is important to decipher the molecular mechanisms of their action. Previous studies indicated that the anthocyanin cyanidin-3-glucoside (C3G) modulates the function of the photoreceptor rhodopsin.
View Article and Find Full Text PDFMetabotropic glutamate receptors (mGluRs) are G protein coupled receptors that play important roles in synaptic plasticity and other neuro-physiological and pathological processes. Allosteric mGluR ligands are particularly promising drug targets because of their modulatory effects--enhancing or suppressing the response of mGluRs to glutamate. The mechanism by which this modulation occurs is not known.
View Article and Find Full Text PDF