Anthranilic acid (2-aminobenzoic acid, 2-AA) has the remarkable property of reacting rapidly with every type of reducing carbohydrate. Reactivity of 2-AA with carbohydrates in aqueous solutions surpasses all other tags reported to date. This unique capability is attributed to the strategically located -COOH which accelerates Schiff base formation.
View Article and Find Full Text PDFTypical clinical grade human IgG (intravenous immunoglobulin, IVIG), used for carbohydrate analysis, is derived from thousands of healthy donors. Quantitative high-resolution glycan profiles of IgG and its Fc-Fab fragments are presented here. Glycan profiles were established following digestions with Fc specific endoglycosidase S and generic PNGase F under denaturing and non-denaturing (native) conditions.
View Article and Find Full Text PDFAssays were developed using the unique labeling chemistry of 2-aminobenzoic acid (2AA; anthranilic acid, AA) for measuring activities of both β1-4 galactosyltransferase (GalT-1) and α2-6 sialyltransferase (ST-6) by high-performance liquid chromatography (HPLC) with fluorescence detection (Anumula KR. 2006. Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates.
View Article and Find Full Text PDFA novel method for the analysis of Ser/Thr-linked sugar chains was made possible by the virtue of unique anthranilic acid (AA, 2-aminobenzoic acid [2AA]) chemistry for labeling carbohydrates in aqueous salt solutions (K. R. Anumula, Anal.
View Article and Find Full Text PDF