Publications by authors named "Kalyan Modugula"

Linking two fragments binding in nearby subpockets together has become an important technique in fragment-based drug discovery to optimize the binding potency of fragment hits. Despite the expected favorable translational and orientational entropic contribution to the binding free energy of the linked molecule, brute force enumeration of chemical linker for linking fragments is rarely successful, and the vast majority of linked molecules do not exhibit the expected gains of binding potency. In this paper, we examine the physical factors that contribute to the change of binding free energy from fragment linking and develop a method to rigorously calculate these different physical contributions.

View Article and Find Full Text PDF

To address some of the inherent challenges in modeling metalloenzymes, we here report an extension to the functional form of the OPLS3e force field to include terms adopted from the ligand field molecular mechanics (LFMM) model, including the angular overlap and Morse potential terms. The integration of these terms with OPLS3e, herein referred to as OPLS3e+M, improves the description of metal-ligand interactions and provides accurate relative binding energies and geometric preferences of transition-metal complexes by training to gas-phase density functional theory (DFT) energies. For [Cu(HO)], OPLS3e+M significantly improves HO binding energies and the geometric preference of the tetra-aqua Cu complex.

View Article and Find Full Text PDF