Though metal ions like copper, iron, zinc, etc. are essential, but their dyshomeostasis is associated with several disorders. Therefore, fast, sensitive, and cost-effective monitoring of these cations will have a significant impact.
View Article and Find Full Text PDFChem Commun (Camb)
November 2024
In this work, a photocurable resin is formulated for masked stereolithography 3D printing of shape-memory polymers that results in 4D printed customized tools for soft robotics applications, in which actuation is demonstrated at near ambient temperatures as programmed by photothermal heating.
View Article and Find Full Text PDFACS Appl Energy Mater
October 2024
Triboelectric nanogenerators (TENGs) have emerged as potential energy sources, as they are capable of harvesting energy from low-frequency mechanical actions such as biological movements, moving parts of machines, mild wind, rain droplets, and others. However, periodic mechanical motion can have a detrimental effect on the triboelectric materials that constitute a TENG device. This study introduces a self-healable triboelectric layer consisting of an Ecoflex-coated self-healable polydimethylsiloxane (SH-PDMS) polymer that can autonomously repair mechanical injury at room temperature and regain its functionality.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
September 2024
Rapid urbanization is a major cause of habitat and biodiversity loss and human-animal conflict. While urbanization is inevitable, we need to develop a good understanding of the urban ecosystem and the urban-adapted species, in order to ensure sustainable cities for our future. Scavengers play a major role in urban ecosystems, and often, urban adaptation involves a shift towards scavenging behaviour in wild animals.
View Article and Find Full Text PDFObjective: Dipeptidase-1 (DPEP-1) is a recently discovered leucocyte adhesion receptor for neutrophils and monocytes in the lungs and kidneys and serves as a potential therapeutic target to attenuate inflammation in moderate-to-severe COVID-19. We aimed to evaluate the safety and efficacy of the DPEP-1 inhibitor, LSALT peptide, to prevent specific organ dysfunction in patients hospitalised with COVID-19.
Design: Phase 2a randomised, placebo-controlled, double-blinded, trial.
J Phys Condens Matter
March 2024
The ZnTe thin film is a potential material for optoelectronic devices in extreme temperature and radiation environments. In this report, the thermal conductivity of ZnTe films is measured non-invasively using the micro-Raman method and correlated with the phonon anharmonic effect. The evolution of crystalline ZnTe thin films from Te/ZnO bilayer by thermal annealing at 450 C has been observed above the melting point of Te, which is confirmed from x-ray diffraction and high-resolution transmission electron microscopy.
View Article and Find Full Text PDFIron, an essential trace element exhibits detrimental effects on human health when present at higher or lower concentration than the required. Therefore, there is a pressing demand for sensitive and selective detection of Fe in water, food etc. Unfortunately, in several instances, the traditional approaches suffer from a number of shortcomings like complicated procedures, limited sensitivity, poor selectivity and more expensive and time consuming.
View Article and Find Full Text PDFMicrosupercapacitors (micro-SCs) with mechanical flexibility have the potential to complement or even replace microbatteries in the portable electronics sector, particularly for portable biomonitoring devices. The real-time biomonitoring of the human body's physical status using lightweight, flexible, and wearable micro-SCs is important to consider, but the main limitation is, however, the low energy density of micro-SCs as compared to microbatteries. Here using a temporally and spatially controlled picosecond pulsed laser, we developed high-energy-density micro-SCs integrated with a force sensing device to monitor a human body's radial artery pulses.
View Article and Find Full Text PDFManipulating light at the sub-wavelength level is a crucial feature of surface plasmon resonance (SPR) properties for a wide range of nanostructures. Noble metals like Au and Ag are most commonly used as SPR materials. Significant attention is being devoted to identify and develop non-noble metal plasmonic materials whose optical properties can be reconfigured for plasmonic response by structural phase changes.
View Article and Find Full Text PDFThe contemporary critical energy crisis demands the fast and cost-effective preparation of supercapacitors to replace old-fashioned batteries. 3D-printing has been established as a fast, cheap, and reliable new manufacturing technique that enables the preparation of such devices..
View Article and Find Full Text PDFInteractions between bovine γ-globulin (BGG) and borohydride-capped silver nanoparticles (BAgNPs) were studied using dynamic light scattering (DLS) and spectroscopic techniques such as UV-vis spectroscopy, fluorescence, and circular dichroism. The results were compared with earlier reported interactions between γ-globulin and citrate-coated AgNPs (CAgNPs). BAgNPs were synthesized and characterized.
View Article and Find Full Text PDFRecently, 2D nanomaterials such as transition metal carbides or nitrides (MXenes) and transition metal dichalcogenides (TMDs) have attracted ample attention in the field of energy storage devices specifically in supercapacitors (SCs) because of their high metallic conductivity, wide interlayer spacing, large surface area, and 2D layered structures. However, the low potential window (ΔV ≈ 0.6 V) of MXene e.
View Article and Find Full Text PDFThe evolution of high electromagnetic absorption materials is essential in the fast growing electronic industry in overcoming electromagnetic pollution. In view of this, a series of Ni nanoparticle-decorated functionalized graphene sheets (FG/Ni) are synthesized by a solvothermal method using different ratios of FG/Ni precursors. Subsequently, FG/Ni is subjected to in situ polymerization of aniline to form FG/Ni/PANI ternary composites and characterized.
View Article and Find Full Text PDFFragment based drug discovery (FBDD) by the aid of different modelling techniques have been emerged as a key drug discovery tool in the area of pharmaceutical science and technology. The merits of employing these methods, in place of other conventional molecular modelling techniques, endorsed clear detection of the possible structural fragments present in diverse set of investigated compounds and can create alternate possibilities of lead optimization in drug discovery. In this work, two fragment identification tools namely SARpy and Laplacian-corrected Bayesian analysis were used for previous SARS-CoV PLpro and 3CLpro inhibitors.
View Article and Find Full Text PDFThe 3D-printing technology offers an innovative approach to develop energy storage devices because of its ability to create facile and low cost customized electrodes for modern electronics. Among the recently explored 2D nanomaterials beyond graphene, molybdenum sulfide (MoS) has been found as a promising material for electrochemical energy storage devices. In this study, a nanocarbon-based conductive filament was 3D-printed and then activated by solvent treatment, followed by electrodeposition of MoS on the printed nanocarbon electrode's surface.
View Article and Find Full Text PDFAn essential trace element copper plays several physiological roles in living systems. But at excess concentration, it exerts toxicity and becomes associated with numerous disorders. In this article, we have reviewed the recent developments (from 2017 to 2020) in the field of fluorescence-based chemosensors for the detection of Cu ion.
View Article and Find Full Text PDFNovel coronavirus disease 2019 (COVID-19) emerges as a serious threat to public health globally. The rapid spreading of COVID-19, caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), proclaimed the multitude of applied research needed not only to save the human health but also for the environmental safety. As per the recent World Health Organization reports, the novel corona virus may never be wiped out completely from the world.
View Article and Find Full Text PDFBackground: Extensive research over the past several decades, explored that the natural compounds contain different plant secondary metabolites and have the potential to inhibit breast cancer resistance protein (BCRP).
Purpose: To identify crucial molecular fingerprints of some natural products for the inhibition of breast cancer resistance protein and also to screen out some potent natural BCRP inhibitors.
Study Design: Multiple modelling strategies were applied with three main mottos: (a) Generation of robust classification models to identify the linear and non-linear relationships among the natural compounds and the inhibition of BCRP, (b) Identification of important structural fingerprints that modulate BCRP inhibition and screening of natural database to find the probable hit molecules, (c) Comprehensive ligand-receptor interactions analysis of those against the putative breast cancer resistant protein through molecular docking analysis.
This study is focused on the preparation of the CuS/RGO nanocomposite via the hydrothermal method using GO and Cu-DTO complex as precursors. X-ray diffraction, Fourier-transform infrared spectroscopy, and Raman and X-ray photoelectron spectroscopy study revealed the formation of the CuS/RGO nanocomposite with improved crystallinity, defective nanostructure, and the presence of the residual functional group in the RGO sheet. The morphological study displayed the transformation of CuS from nanowire to quantum dots with the incorporation of RGO.
View Article and Find Full Text PDFThe present work reports on the fabrication of a lightweight microwave absorber comprising MnCoO prepared from the urea complex of manganese (Mn)/cobalt (Co) and nitrogen-doped reduced graphite oxide (NRGO) by facile hydrothermal method followed by annealing process and characterized. The phase analysis, compositional, morphological, magnetic, and conductivity measurements indicated dispersion of paramagnetic MnCoO spherical particles on the surface of NRGO. Our findings also showed that Mn, Co-urea complex, and GO in the weight ratio of 1:4 (NGMC3) exhibited maximum shielding efficiency in the range of 55-38 dB with absorption as an overall dominant shielding mechanism.
View Article and Find Full Text PDFThe present work is focused on the synthesis of bismuth sulfide (Bi2S3) nanorod/reduced graphene oxide (RGO) composites via a one-step hydrothermal method using GO and bismuth nitrate in 5 : 1, 3 : 1 and 2 : 1 weight ratios and their characterization. The morphological studies revealed the formation of homogeneously dispersed Bi2S3 nanorods on RGO sheets along with occasional wrapping in the Bi2S3 nanorod/RGO (3 : 1) composite. XRD, FTIR, Raman and XPS studies suggested the incorporation of Bi2S3 in RGO sheets.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) brutally perils physical and mental health worldwide. Unavailability of effective anti-viral drug rendering global threat of COVID-19 caused by SARS-CoV-2. In this scenario, viral protease enzymes are crucial targets for drug discovery.
View Article and Find Full Text PDFAdditive manufacturing or 3D-printing have become promising fabrication techniques in the field of electrochemical energy storage applications such as supercapacitors, and batteries. Of late, a commercially available graphene/polylactic acid (PLA) filament has been commonly used for Fused Deposition Modeling (FDM) 3D-printing in the fabrication of electrodes for supercapacitors and Li-ion batteries. This graphene/PLA filament contains metal-based impurities such as titanium oxide and iron oxide.
View Article and Find Full Text PDFThe high mortality rate and the increasing prevalence of Mtb resistance are the major concerns for the Tuberculosis (TB) treatment in this century. To counteract the prevalence of Mtb resistance, we have synthesized 2-aryl benzazole based dual targeted molecules. Compound 9m and 9n were found to be equally active against replicating and non-replicating form of Mtb (MIC 1.
View Article and Find Full Text PDFAs the world struggles against current global pandemic of novel coronavirus disease (COVID-19), it is challenging to trigger drug discovery efforts to search broad-spectrum antiviral agents. Thus, there is a need of strong and sustainable global collaborative works especially in terms of new and existing data analysis and sharing which will join the dots of knowledge gap. Our present chemical-informatics based data analysis approach is an attempt of application of previous activity data of SARS-CoV main protease (Mpro) inhibitors to accelerate the search of present SARS-CoV-2 Mpro inhibitors.
View Article and Find Full Text PDF