ACS Appl Mater Interfaces
September 2021
Aluminum and its alloys are widely used in various industries. Aluminum plays an important role in heat transfer applications, where enhancing the overall system performance through surface nanostructuring is achieved. Combining optimized nanostructures with a conformal hydrophobic coating leads to superhydrophobicity, which enables coalescence induced droplet jumping, enhanced condensation heat transfer, and delayed frosting.
View Article and Find Full Text PDFVapor condensation is a widely used industrial process for transferring heat and separating fluids. Despite progress in developing low surface energy hydrophobic and micro/nanostructured superhydrophobic coatings to enhance water vapor condensation, demonstration of stable dropwise condensation of low-surface-tension fluids has not been achieved. Here, we develop rationally designed nanoengineered lubricant-infused surfaces (LISs) having ultralow contact angle hysteresis (<3°) for stable dropwise condensation of ethanol (γ ≈ 23 mN/m) and hexane (γ ≈ 19 mN/m).
View Article and Find Full Text PDFFrost spreads on nonwetting surfaces during condensation frosting via an interdroplet frost wave. When a supercooled condensate water droplet freezes on a hydrophobic or superhydrophobic surface, neighboring droplets still in the liquid phase begin to evaporate. Two possible mechanisms govern the evaporation of neighboring water droplets: (1) The difference in saturation pressure of the water vapor surrounding the liquid and frozen droplets induces a vapor pressure gradient, and (2) the latent heat released by freezing droplets locally heats the substrate, leading to evaporation of nearby droplets.
View Article and Find Full Text PDF