Publications by authors named "Kalyan Biswas"

π-Electron magnetic compounds on surfaces have emerged as a powerful platform to interrogate spin interactions at the atomic scale, with great potential in spintronics and quantum technologies. A key challenge is organizing these compounds over large length scales, while elucidating their resulting magnetic properties. Herein, we offer a relevant contribution toward this objective, which consists of using on-surface synthesis coupled with coordination chemistry to promote the self-assembly of π-electron magnetic porphyrin species.

View Article and Find Full Text PDF

The incorporation of non-benzenoid motifs in graphene nanostructures significantly impacts their properties, making them attractive for applications in carbon-based electronics. However, understanding how specific non-benzenoid structures influence their properties remains limited, and further investigations are needed to fully comprehend their implications. Here, we report an on-surface synthetic strategy toward fabricating non-benzenoid nanographenes containing different combinations of pentagonal and heptagonal rings.

View Article and Find Full Text PDF

Antiferromagnetic spintronics is a rapidly emerging field with the potential to revolutionize the way information is stored and processed. One of the key challenges in this field is the development of novel 2D antiferromagnetic materials. In this paper, the first on-surface synthesis of a Co-directed metal-organic network is reported in which the Co atoms are strongly antiferromagnetically coupled, while featuring a perpendicular magnetic anisotropy.

View Article and Find Full Text PDF
Article Synopsis
  • * The study explores the synthesis of new azulene-embedded NGs on a gold surface, revealing unexpected structural and conformational characteristics through advanced imaging techniques like scanning tunneling microscopy (STM) and atomic force microscopy (nc-AFM).
  • * The research includes computational analysis using density functional theory (DFT) and molecular dynamics (MD) simulations to understand the dynamics of precursor materials and inform the design of π-extended non-benzenoid NGs for future applications.
View Article and Find Full Text PDF

The design of open-shell carbon-based nanomaterials is at the vanguard of materials science, steered by their beneficial magnetic properties like weaker spin-orbit coupling than that of transition metal atoms and larger spin delocalization, which are of potential relevance for future spintronics and quantum technologies. A key parameter in magnetic materials is the magnetic exchange coupling (MEC) between unpaired spins, which should be large enough to allow device operation at practical temperatures. In this work, we theoretically and experimentally explore three distinct families of nanographenes (NGs) (, , and ) featuring majority zigzag peripheries.

View Article and Find Full Text PDF

The synthesis of novel polymeric materials with porphyrinoid compounds as key components of the repeating units attracts widespread interest from several scientific fields in view of their extraordinary variety of functional properties with potential applications in a wide range of highly significant technologies. The vast majority of such polymers present a closed-shell ground state, and, only recently, as the result of improved synthetic strategies, the engineering of open-shell porphyrinoid polymers with spin delocalization along the conjugation length has been achieved. Here, we present a combined strategy toward the fabrication of one-dimensional porphyrinoid-based polymers homocoupled via surface-catalyzed [3 + 3] cycloaromatization of isopropyl substituents on Au(111).

View Article and Find Full Text PDF

On-surface synthesis has recently emerged as a powerful strategy to design conjugated polymers previously precluded in conventional solution chemistry. Here, an N-containing pentacene-based precursor (tetraazapentacene) is ex-professo synthesized endowed with terminal dibromomethylene (:CBr ) groups to steer homocoupling via dehalogenation on metallic supports. Combined scanning probe microscopy investigations complemented by theoretical calculations reveal how the substrate selection drives different reaction mechanisms.

View Article and Find Full Text PDF
Article Synopsis
  • The synthesis of long n-peri-acenes (n-PAs) is difficult due to their unstable open-shell radical character, making them interesting for studying magnetism in graphene structures.
  • Researchers successfully created the largest known n-PA, peri-heptacene (n=7, 7-PA), on an Au(111) surface under ultra-high vacuum, aided by high-resolution scanning tunneling microscopy.
  • Investigations also showed that 7-PA has an antiferromagnetic open-shell singlet ground state, with specific spin-flip excitations and effective exchange coupling measured at 49 meV.
View Article and Find Full Text PDF

The synthesis of nanographenes (NGs) with open-shell ground states have recently attained increasing attention in view of their interesting physicochemical properties and great prospects in manifold applications as suitable materials within the rising field of carbon-based magnetism. A potential route to induce magnetism in NGs is the introduction of structural defects, for instance non-benzenoid rings, in their honeycomb lattice. Here, we report the on-surface synthesis of three open-shell non-benzenoid NGs (, and ) on the Au(111) surface.

View Article and Find Full Text PDF

The atomically precise control over the size, shape and structure of nanographenes (NGs) or the introduction of heteroatom dopants into their sp -carbon lattice confer them valuable electronic, optical and magnetic properties. Herein, we report on the design and synthesis of a hexabenzocoronene derivative embedded with graphitic nitrogen in its honeycomb lattice, achieved via on-surface assisted cyclodehydrogenation on the Au(111) surface. Combined scanning tunnelling microscopy/spectroscopy and non-contact atomic force microscopy investigations unveil the chemical and electronic structures of the obtained dicationic NG.

View Article and Find Full Text PDF

Among the plethora of polycyclic structures that have emerged in recent years, indenofluorenes comprise a unique class of compounds due to their potential in organic electronic systems such as OLEDs, OFETs, and OPVCs. However, the synthesis of fully conjugated indenofluorenes without bulky groups on the apical carbons under standard chemistry conditions is not easily accessible. In this regard, on-surface synthesis has appeared as a newly developing field of research, which exploits the use of well-defined solid surfaces as confinement templates to initiate and develop chemical reactions.

View Article and Find Full Text PDF

On-surface synthesis has recently become an essential approach toward the formation of carbon-based nanostructures. Special emphasis is set on the synthesis of π-conjugated polymers taking into consideration their relevance and potential in organic electronics, optoelectronics and spintronics. Here, we report the on-surface synthesis of conjugated ladder polymers consisting of pentacene units doubly-linked via ethynylene-like bonds on the Au(111) surface under ultra-high vacuum conditions.

View Article and Find Full Text PDF