The importance of BET protein BRD4 in gene transcription is well recognized through the study of chemical modulation of its characteristic tandem bromodomain (BrD) binding to lysine-acetylated histones and transcription factors. However, while monovalent inhibition of BRD4 by BET BrD inhibitors such as JQ1 blocks growth of hematopoietic cancers, it is much less effective generally in solid tumors. Here, we report a thienodiazepine-based bivalent BrD inhibitor, MS645, that affords spatially constrained tandem BrD inhibition and consequently sustained repression of BRD4 transcriptional activity in blocking proliferation of solid-tumor cells including a panel of triple-negative breast cancer (TNBC) cells.
View Article and Find Full Text PDFT-helper 17 (Th17) cells have important functions in adaptor immunity and have also been implicated in inflammatory disorders. The bromodomain and extraterminal domain (BET) family proteins regulate gene transcription during lineage-specific differentiation of naïve CD4 T cells to produce mature T-helper cells. Inhibition of acetyl-lysine binding of the BET proteins by pan-BET bromodomain (BrD) inhibitors, such as JQ1, broadly affects differentiation of Th17, Th1, and Th2 cells that have distinct immune functions, thus limiting their therapeutic potential.
View Article and Find Full Text PDF3,3'-diindolylmethane (DIM) is currently being investigated in many clinical trials including prostate, breast, and cervical cancers and has been shown to possess anticancer effects in several in vivo and in vitro models. Previously, DIM has been reported to possess cancer chemopreventive effects in prostate carcinogenesis in TRAMP mice; however, the in vivo mechanism is unclear. The present study aims to investigate the in vitro and in vivo epigenetics modulation of DIM in TRAMP-C1 cells and in TRAMP mouse model.
View Article and Find Full Text PDFCurcumin (CUR), a major bioactive polyphenolic component from turmeric curry, Curcuma longa, has been shown to be a potent anti-cancer phytochemical with well-established anti-inflammatory and anti-oxidative stress effects. Chromatin remodeling-related epigenetic regulation has emerged as an important mechanism of carcinogenesis, chemoprevention, and chemotherapy. CUR has been found to inhibit histone acetyltransferase activity, and it was also postulated to be a potential DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitor.
View Article and Find Full Text PDFCancer Metastasis Rev
September 2010
Carcinogenesis is a multi-step process which could be prevented by phytochemicals. Phytochemicals from dietary plants and other plant sources such as herbs are becoming increasingly important sources of anticancer drugs or compounds for cancer chemoprevention or adjuvant chemotherapy. Phytochemicals can prevent cancer initiation, promotion, and progression by exerting anti-inflammatory and anti-oxidative stress effects which are mediated by integrated Nrf2, NF-kappaB, and AP-1 signaling pathways.
View Article and Find Full Text PDFNuclear factor-erythroid 2 p45-related factor 2 (Nrf2) is a transcription factor which regulates the expression of many cytoprotective genes. In the present study, we found that the expression of Nrf2 was suppressed in prostate tumor of the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mice. Similarly, the expression of Nrf2 and the induction of NQO1 were also substantially suppressed in tumorigenic TRAMP C1 cells but not in non-tumorigenic TRAMP C3 cells.
View Article and Find Full Text PDF