The storage of fat within lipid droplets (LDs) of adipocytes is critical for whole-body health. Acute fatty acid (FA) uptake by differentiating adipocytes leads to the formation of at least two LD classes marked by distinct perilipins (PLINs). How this LD heterogeneity arises is an important yet unresolved cell biological problem.
View Article and Find Full Text PDFLipid droplets (LDs) store lipids that can be utilized during times of scarcity via autophagic and lysosomal pathways, but how LDs and autophagosomes interact remained unclear. Here, we discovered that the E2 autophagic enzyme, ATG3, localizes to the surface of certain ultra-large LDs in differentiated murine 3T3-L1 adipocytes or Huh7 human liver cells undergoing prolonged starvation. Subsequently, ATG3 lipidates microtubule-associated protein 1 light-chain 3B (LC3B) to these LDs.
View Article and Find Full Text PDFLipid droplets (LDs) are reservoirs for triglycerides (TGs) and sterol-esters (SEs), but how these lipids are organized within LDs and influence their proteome remain unclear. Using in situ cryo-electron tomography, we show that glucose restriction triggers lipid phase transitions within LDs generating liquid crystalline lattices inside them. Mechanistically this requires TG lipolysis, which decreases the LD's TG:SE ratio, promoting SE transition to a liquid crystalline phase.
View Article and Find Full Text PDFLipid droplets (LDs) are the primary organelles of lipid storage, buffering energy fluctuations of the cell. They store neutral lipids in their core that is surrounded by a protein-decorated phospholipid monolayer. LDs arise from the endoplasmic reticulum (ER).
View Article and Find Full Text PDFLipid droplets (LDs) are involved in viral infections, but exactly how remains unclear. Here, we study the hepatitis C virus (HCV) whose core capsid protein binds to LDs but is also involved in the assembly of virions at the endoplasmic reticulum (ER) bilayer. We found that the amphipathic helix-containing domain of core, D2, senses triglycerides (TGs) rather than LDs per se.
View Article and Find Full Text PDFDuring energy bursts, neutral lipids fabricated within the ER bilayer demix to form lipid droplets (LDs). LDs bud off mainly in the cytosol where they regulate metabolism and multiple biological processes. They indeed become accessible to most enzymes and can interact with other organelles.
View Article and Find Full Text PDFLipid droplets (LDs) in all eukaryotic cells are coated with at least one of the perilipin (Plin) family of proteins. They all regulate key intracellular lipases but do so to significantly different extents. Where more than one Plin is expressed in a cell, they associate with LDs in a hierarchical manner.
View Article and Find Full Text PDFCells convert excess energy into neutral lipids that are made in the endoplasmic reticulum (ER) bilayer. The lipids are then packaged into spherical or budded lipid droplets (LDs) covered by a phospholipid monolayer containing proteins. LDs play a key role in cellular energy metabolism and homeostasis.
View Article and Find Full Text PDFPhagocytosis by macrophages represents a fundamental process essential for both immunity and tissue homeostasis. The size of targets to be eliminated ranges from small particles as bacteria to large objects as cancerous or senescent cells. Most of our current quantitative knowledge on phagocytosis is based on the use of solid polymer microparticles as model targets that are well adapted to the study of phagocytosis mechanisms that do not involve any lateral mobility of the ligands, despite the relevance of this parameter in the immunological context.
View Article and Find Full Text PDF