Near-field microscopy allows for visualization of both the amplitude and phase of surface plasmon polaritons (SPPs). However, their quantitative characterization in a reflection configuration is challenging due to complex wave patterns arising from the interference between several excitation channels. Here, we present near-field measurements of SPPs on large monocrystalline gold platelets in the visible.
View Article and Find Full Text PDFInfrared fingerprint spectra can reveal the chemical nature of materials down to 20-nm detail, far below the diffraction limit, when probed by scattering-type scanning near-field optical microscopy (s-SNOM). But this was impossible with living cells or aqueous processes as in corrosion, due to water-related absorption and tip contamination. Here, we demonstrate infrared s-SNOM of water-suspended objects by probing them through a 10-nm thick SiN membrane.
View Article and Find Full Text PDFBackground: Defects in DNA damage repair genes characterize a subset of men with prostate cancer and provide an attractive opportunity for precision oncology approaches. The prevalence of such perturbations in newly diagnosed, treatment-naïve patients with a high risk for lethal disease outcome, however, has not been sufficiently explored.
Patients And Methods: Prostate cancer specimens from 67 men with newly diagnosed early onset, localized high-risk/locally advanced or metastatic prostate cancer were included in this prospective pilot study.
We demonstrate the first megahertz (MHz) repetition-rate, broadband terahertz (THz) source based on optical rectification in the organic crystal HMQ-TMS driven by a femtosecond Yb:fibre laser. Pumping at 1035 nm with 30 fs pulses, we achieve few-cycle THz emission with a smooth multi-octave spectrum that extends up to 6 THz at -30 dB, with conversion efficiencies reaching 10 and an average output power of up to 0.38 mW.
View Article and Find Full Text PDFWe address the long-standing problem of anomalous growth observed in the terahertz (THz) energy yield from air plasmas created by two-color laser pulses, as the fundamental wavelength λ is increased. Using two distinct optical parametric amplifiers (OPAs), we report THz energies scaling like λ0α with large exponents 5.6≤α≤14.
View Article and Find Full Text PDFWe investigate the dielectric properties of the 4H and 6H polytypes of silicon carbide in the 0.1-19 THz range, below the fundamental transverse-optical phonons. Folding of the Brillouin zone due to the specific superlattice structure of the two polytypes leads to activation of acoustic phonon modes.
View Article and Find Full Text PDFAs an alternative to metallic resonators, dielectric resonators can increase radiation efficiencies of metasurfaces at terahertz frequencies. Such subwavelength resonators made from low-loss dielectric materials operate on the basis of oscillating displacement currents. For full control of electromagnetic waves, it is essential that dielectric resonators operate around their resonant modes.
View Article and Find Full Text PDFHyperlenses and hyperbolic media endoscopes can overcome the diffraction limit by supporting propagating high spatial frequency extraordinary waves. While hyperlenses can resolve subwavelength details far below the diffraction limit, images obtained from them are not perfect: resonant high spatial frequency slab modes as well as diffracting ordinary waves cause image distortion and artefacts. In order to use hyperlenses as broad-band subwavelength imaging devices, it is thus necessary to avoid or correct such unwanted artefacts.
View Article and Find Full Text PDFUsing conventional materials, the resolution of focusing and imaging devices is limited by diffraction to about half the wavelength of light, as high spatial frequencies do not propagate in isotropic materials. Wire array metamaterials, because of their extreme anisotropy, can beat this limit; however, focusing with these has only been demonstrated up to microwave frequencies and using propagation over a few wavelengths only. Here we show that the principle can be scaled to frequencies orders of magnitudes higher and to considerably longer propagation lengths.
View Article and Find Full Text PDF