Publications by authors named "Kaltenbacher T"

Article Synopsis
  • Gonadotropes are special cells in the front part of the pituitary gland that help control fertility by connecting the brain to reproductive organs.
  • When it's time for ovulation, these cells release a hormone called luteinizing hormone (LH), but scientists weren't sure how this happened.
  • In their study using mice, researchers found that gonadotropes become super active and can release LH even without hormonal signals, and this is linked to certain calcium channels and reactive oxygen species in the cells.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how changes in gene regulation, which are not directly about the genes themselves, affect cancer in mice.
  • They found that small variations in gene activity can play a big role in how tumors develop and grow.
  • Their research helped identify certain non-coding regions linked to cancer and showed how these changes can lead to serious tumors in specific types of cells.
View Article and Find Full Text PDF

Genetically engineered mouse models (GEMMs) transformed the study of organismal disease phenotypes but are limited by their lengthy generation in embryonic stem cells. Here, we describe methods for rapid and scalable genome engineering in somatic cells of the liver and pancreas through delivery of CRISPR components into living mice. We introduce the spectrum of genetic tools, delineate viral and nonviral CRISPR delivery strategies and describe a series of applications, ranging from gene editing and cancer modeling to chromosome engineering or CRISPR multiplexing and its spatio-temporal control.

View Article and Find Full Text PDF

KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) is highly immunosuppressive and resistant to targeted and immunotherapies. Among the different PDAC subtypes, basal-like mesenchymal PDAC, which is driven by allelic imbalance, increased gene dosage and subsequent high expression levels of oncogenic KRAS, shows the most aggressive phenotype and strongest therapy resistance. In the present study, we performed a systematic high-throughput combination drug screen and identified a synergistic interaction between the MEK inhibitor trametinib and the multi-kinase inhibitor nintedanib, which targets KRAS-directed oncogenic signaling in mesenchymal PDAC.

View Article and Find Full Text PDF

Oncogenic mutations in family genes arise frequently in metastatic human cancers. Here we developed new mouse and cellular models of oncogenic Hras-driven undifferentiated pleomorphic sarcoma metastasis and of Kras-driven pancreatic ductal adenocarcinoma metastasis. Through analyses of these cells and of human oncogenic KRAS-, NRAS- and BRAF-driven cancer cell lines we identified that resistance to single MEK inhibitor and ERK inhibitor treatments arise rapidly but combination therapy completely blocks the emergence of resistance.

View Article and Find Full Text PDF

Supersonic molecular beams are used in many applications ranging from spectroscopy and matter wave optics to surface science. The experimental setup typically includes a conically shaped, collimating aperture, the skimmer. It has been reported that microskimmers with diameters below 10 m produce beams with significantly broader velocity distributions (smaller speed ratios) than larger skimmers.

View Article and Find Full Text PDF

The poor correlation of mutational landscapes with phenotypes limits our understanding of the pathogenesis and metastasis of pancreatic ductal adenocarcinoma (PDAC). Here we show that oncogenic dosage-variation has a critical role in PDAC biology and phenotypic diversification. We find an increase in gene dosage of mutant KRAS in human PDAC precursors, which drives both early tumorigenesis and metastasis and thus rationalizes early PDAC dissemination.

View Article and Find Full Text PDF

Time-of-flight (TOF) is a standard experimental technique for determining, among others, the speed ratio S (velocity spread) of a molecular beam. The speed ratio is a measure for the monochromaticity of the beam and an accurate determination of S is crucial for various applications, for example, for characterising chromatic aberrations in focussing experiments related to helium microscopy or for precise measurements of surface phonons and surface structures in molecular beam scattering experiments. For both of these applications, it is desirable to have as high a speed ratio as possible.

View Article and Find Full Text PDF

A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1μm was reached.

View Article and Find Full Text PDF

Despite being mutated in cancer and RASopathies, the role of the activation segment (AS) has not been addressed for B-Raf signaling in vivo. Here, we generated a conditional knock-in mouse allowing the expression of the B-Raf(AVKA) mutant in which the AS phosphoacceptor sites T599 and S602 are replaced by alanine residues. Surprisingly, despite producing a kinase-impaired protein, the Braf(AVKA) allele does not phenocopy the lethality of Braf-knockout or paradoxically acting knock-in alleles.

View Article and Find Full Text PDF

The precise measurement of forces is one way to obtain deep insight into the fundamental interactions present in nature. In the context of neutral antimatter, the gravitational interaction is of high interest, potentially revealing new forces that violate the weak equivalence principle. Here we report on a successful extension of a tool from atom optics--the moiré deflectometer--for a measurement of the acceleration of slow antiprotons.

View Article and Find Full Text PDF

Here we present the first two-dimensional images of the virtual source of a supersonic helium expansion. The images were obtained using a free-standing Fresnel zone plate with an outermost zone width of 50 nm as imaging lens and a beam cooled to around 125 K. The nozzle diameter was 10 μm.

View Article and Find Full Text PDF

The paper addresses a novel method to couple a signal from charged particles in a Penning trap to a high Q resonant circuit using a crystal resonator. Traditionally, the trap capacity is converted into a resonator by means of an inductance. The tuned circuit's Q factor is directly linked to the input impedance "seen" by the trapped particles at resonance frequency.

View Article and Find Full Text PDF