Publications by authors named "Kalt H"

Rotationally symmetric micro-cavities with disk, ring or toroidal shape displaying whispering gallery modes (WGMs) play an essential role in modern-day photonics. Due to the reduced symmetry of such resonators compared to spheres, an exact analytical model yielding WGMs as solutions does not exist. The established WGM classification scheme based on approximated analytical solutions is generally useful but neglects a possible interaction between the different modes.

View Article and Find Full Text PDF

A method for the realization of low-loss integrated optical components is proposed and demonstrated. This approach is simple, fast, inexpensive, scalable for mass production, and compatible with both 2D and 3D geometries. The process is based on a novel dual-step soft nano imprint lithography process for producing devices with smooth surfaces, combined with fast sol-gel technology providing highly transparent materials.

View Article and Find Full Text PDF

We compare different excitation and collection configurations based on free-space optics and evanescently coupled tapered fibers for both lasing and fluorescence emission from dye-doped doped polymeric whispering gallery mode (WGM) micro-disk lasers. The focus of the comparison is on the lasing threshold and efficiency of light collection. With the aid of optical fibers, we localize the pump energy to the cavity-mode volume and reduce the necessary pump energy to achieve lasing by two orders of magnitude.

View Article and Find Full Text PDF

Whispering-gallery mode (WGM) microdisk lasers show great potential for highly sensitive label-free detection in large-scale sensor arrays. However, when used in practical applications under normal ambient conditions, these devices suffer from temperature fluctuations and photobleaching. Here we demonstrate that these challenges can be overcome by a novel referencing scheme that allows for simultaneous compensation of temperature drift and photobleaching.

View Article and Find Full Text PDF

We demonstrate the realization of 3D whispering-gallery-mode (WGM) microlasers by direct laser writing (DLW) and their replication by nanoimprint lithography using a soft mold technique ("soft NIL"). The combination of DLW as a method for rapid prototyping and soft NIL offers a fast track towards large scale fabrication of 3D passive and active optical components applicable to a wide variety of materials. A performance analysis shows that surface-scattering-limited Q-factors of replicated resonators as high as 1×10 at 635 nm can be achieved with this process combination.

View Article and Find Full Text PDF

Integration of optically active materials into whispering gallery mode (WGM) cavities enables low-threshold laser emission. In contrast to their passive counterparts, the WGMs of these microlasers can be pumped and read out easily via free-space optics. The WGMs interact with the cavity environment via their evanescent field, and thus lend themselves to label-free bio-sensing.

View Article and Find Full Text PDF

Optical micro-resonators have broad applications. They are used, for example, to enhance light-matter interactions in optical sensors or as model systems for investigating fundamental physical mechanisms in cavity quantum electrodynamics. Coupling two or more micro-cavities is particularly interesting as it enlarges the design freedom and the field of application.

View Article and Find Full Text PDF

Artificial light-harvesting systems have until now not been able to self-assemble into structures with a large photon capture cross-section that upon a stimulus reversibly can switch into an inactive state. Here we describe a simple and robust FLFL-dipeptide construct to which a meso-tetraphenylporphyrin has been appended and which self-assembles to fibrils, platelets or nanospheres depending on the solvent composition. The fibrils, functioning as quenched antennas, give intense excitonic couplets in the electronic circular dichroism spectra which are mirror imaged if the unnatural FDFD-analogue is used.

View Article and Find Full Text PDF

We present an all-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers integrated into a microfluidic chip. The chip is entirely made from polymers, enabling the use of the devices as low-cost disposables. The microgoblet cavities feature quality factors exceeding 10(5) and are fabricated from poly(methyl methacrylate) (PMMA) using spin-coating, mask-based optical lithography, wet chemical etching, and thermal reflow.

View Article and Find Full Text PDF

Parallel readout of the micro-lasers facilitates effective mutual filtering of highly localized refractive index and temperature fluctuations in the analyte. Cross-referenced detection of two different types of proteins and complete chemical transducer reconfiguration is demonstrated. Selective surface functionalization of the individual lasers with high spatial accuracy is achieved by aligned microcontact stamping.

View Article and Find Full Text PDF

Lasing from whispering-gallery mode (WGM) resonators occurs omnidirectional in azimuthal plane. Most applications of WGM resonators require spectral analysis with off-chip detectors, where in-plane emission and beam divergence hinder efficient detection. We demonstrate redirecting WGM laser emission from all azimuthal angles using a circular micromirror placed around the cavity.

View Article and Find Full Text PDF

We use polarization-resolved Raman spectroscopy to assess the crystal quality of epitaxial kesterite layers. It is demonstrated for the example of epitaxial Cu₂ZnSnSe₄ layers on GaAs(001) that "standing" and "lying" kesterite unit cell orientations (c'-axis parallel / perpendicular to the growth direction) can be distinguished by the application of Raman tensor analysis. From the appearance of characteristic intensity oscillations when the sample is rotated one can distinguish polycrystalline and epitaxial layers.

View Article and Find Full Text PDF

Lasing emission from random cavities formed in networks of electrospun Rhodamine-doped polymer fibers is presented. Spatially resolved spectroscopy and spectral analysis prove that the observed laser emission stems from individual ring resonators randomly distributed throughout the network. These electrospun fiber lasers represent a facile and straightforward configuration for developing novel photonic devices that may advantageously utilize the network morphology.

View Article and Find Full Text PDF

A novel surface functionalization technique is presented for large-scale selective molecule deposition onto whispering gallery mode microgoblet cavities. The parallel technique allows damage-free individual functionalization of the cavities, arranged on-chip in densely packaged arrays. As the stamp pad a glass slide is utilized, bearing phospholipids with different functional head groups.

View Article and Find Full Text PDF

We report on a novel approach to realize on-chip microlasers, by applying highly localized and material-saving surface functionalization of passive photonic whispering gallery mode microresonators. We apply dip-pen nanolithography on a true three-dimensional structure. We coat solely the light-guiding circumference of pre-fabricated poly(methyl methacrylate) resonators with a multifunctional molecular ink.

View Article and Find Full Text PDF

We report the fabrication of nanoporous liquid core lasers via direct laser writing based on two-photon absorption in combination with thiolene-chemistry. As gain medium Rhodamine 6G was embedded in the nanoporous polybutadiene matrix. The lasing devices with thresholds of 19 µJ/mm(2) were measured to have bulk refractive index sensitivities of 169 nm/RIU at a laser wavelength of 600 nm, demonstrating strongly increased overlap of the modes with the analyte in comparison to solid state evanescent wave sensors.

View Article and Find Full Text PDF

We report on a method for a highly flexible arrangement of polymeric high-Q whispering gallery mode resonators. Parallel on-chip fabricated goblet resonators are detached from the substrate by bonding a gold wire to the field-free center of their polymeric cavity. This enables the precise control of the resonator's spatial position.

View Article and Find Full Text PDF

Cell populations often display heterogeneous behavior, including cell-to-cell variations in morphology, adhesion and spreading. However, better understanding the significance of such cell variations for the function of the population as a whole requires quantitative single-cell assays. To investigate adhesion variability in a CHO cell population in detail, we measured integrin-mediated adhesion to laminin and collagen, two ubiquitous ECM components, by AFM-based single-cell force spectroscopy (SCFS).

View Article and Find Full Text PDF

We report the fabrication of high-Q polymeric microdisks on silicon via direct laser writing utilizing two-photon absorption induced polymerization. The quality factors of the passive cavities are above 10(6) in the 1300 nm wavelength region. The flexible three-dimensional (3D) lithography method allows for the fabrication of different cavity thicknesses on the same substrate, useful for rapid prototyping of active and passive optical microcavities.

View Article and Find Full Text PDF

An efficient noncovalent assembly process involving high geometrical control was applied to a linear bis(imidazolyl zinc porphyrin) 7Zn, bearing C(18) substitutents, to generate linear multiporphyrin wires. The association process is based on imidazole recognition within the cavity of the phenanthroline-strapped zinc porphyrin. In chlorinated solvents, discrete soluble oligomers were obtained after (7Zn)(n) was end-capped with a terminal single imidazolyl zinc porphyrin derivative 4Zn.

View Article and Find Full Text PDF

We investigate lasing from high-Q, polymeric goblet-type microcavities covered by an organic semiconductor gain layer. We analyze the optical modes in the high-Q cavities using finite element simulations and present a numerical method to determine the cutoff thickness of the gain layer above which the whispering gallery modes are strongly confined in this layer. Fabricated devices show reduced lasing thresholds for increasing gain layer thicknesses, which can be explained by a higher filling factor of the optical modes in the gain layer.

View Article and Find Full Text PDF

A weak acid selective etching strategy was put forward to fabricate oxide-based hollow nanoparticles (HNPs) using core/shell nanostructures of active metal/oxide nanoparticles as sacrificial templates. ZnO-based HNPs, including pure ZnO, Au/ZnO, Pt/ZnO, and Au/Pt/ZnO HNPs with diameter below 50 nm and shell thickness below 6 nm has been first achieved at low temperature. The diameter, thickness, and even sizes of ZnO and noble metal ultrafine crystals of HNPs can be well adjusted by the etching process.

View Article and Find Full Text PDF

We present simulation results for optical modes in micro-pillar cavities that were computed with the finite element method and that show good agreement with experimental data. By means of this viable tool various influences on the quality factor of the fundamental mode were calculated: Firstly, the light confinement depends strongly on the absorption of the semiconductor cavity material. Here we were able to determine absolute maximum quality factors achievable in a GaAs/AlAs Bragg micro-pillar cavity.

View Article and Find Full Text PDF

Bacteriochlorophylls (BChls) c, d, and e are the main light-harvesting pigments of green photosynthetic bacteria that self-assemble into nanostructures within the chlorosomes forming the most efficient antennas of photosynthetic organisms. All previous models of the chlorosomal antennae, which are quite controversially discussed because no single crystals could be grown so far from these organelles, involve a strong hydrogen-bonding interaction between the 3(1) hydroxyl group and the 13(1) carbonyl group. We have synthesized different self-assemblies of BChl c mimics having the same functional groups as the natural counterparts, that is, a hydroxyethyl substituent, a carbonyl group and a divalent metal atom ligated by a tetrapyrrole.

View Article and Find Full Text PDF

We study the lasing dynamics of individual ZnO nanorods by time-resolved mu-photoluminescence. The distinct laser modes show gain competition and pronounced shifts as a function of excitation density. This behavior can be understood in terms of many-particle effects within an inverted electron-hole plasma and of the calculated mode spectra of the particular nanorod, whose geometry is known from electron microscope investigations.

View Article and Find Full Text PDF