microRNA (miRNA)-messenger RNA (mRNA or gene) interactions are pivotal in various biological processes, including the regulation of gene expression, cellular differentiation, proliferation, apoptosis, and development, as well as the maintenance of cellular homeostasis and pathogenesis of numerous diseases, such as cancer, cardiovascular diseases, neurological disorders, and metabolic conditions. Understanding the mechanisms of miRNA-mRNA interactions can provide insights into disease mechanisms and potential therapeutic targets. However, extracting these interactions efficiently from a huge collection of published articles in PubMed is challenging.
View Article and Find Full Text PDFAMIA Jt Summits Transl Sci Proc
May 2024
Relation Extraction (RE) is a natural language processing (NLP) task for extracting semantic relations between biomedical entities. Recent developments in pre-trained large language models (LLM) motivated NLP researchers to use them for various NLP tasks. We investigated GPT-3.
View Article and Find Full Text PDFAlzheimer's disease (AD), a multifactorial neurodegenerative disorder, is prevalent among the elderly population. It is a complex trait with mutations in multiple genes. Although the US Food and Drug Administration (FDA) has approved a few drugs for AD treatment, a definitive cure remains elusive.
View Article and Find Full Text PDFMotivation: Large Language Models (LLMs) have the potential to revolutionize the field of Natural Language Processing, excelling not only in text generation and reasoning tasks but also in their ability for zero/few-shot learning, swiftly adapting to new tasks with minimal fine-tuning. LLMs have also demonstrated great promise in biomedical and healthcare applications. However, when it comes to Named Entity Recognition (NER), particularly within the biomedical domain, LLMs fall short of the effectiveness exhibited by fine-tuned domain-specific models.
View Article and Find Full Text PDFBackground: The PubMed archive contains more than 34 million articles; consequently, it is becoming increasingly difficult for a biomedical researcher to keep up-to-date with different knowledge domains. Computationally efficient and interpretable tools are needed to help researchers find and understand associations between biomedical concepts. The goal of literature-based discovery (LBD) is to connect concepts in isolated literature domains that would normally go undiscovered.
View Article and Find Full Text PDFMotivation: Automated extraction of participants, intervention, comparison/control, and outcome (PICO) from the randomized controlled trial (RCT) abstracts is important for evidence synthesis. Previous studies have demonstrated the feasibility of applying natural language processing (NLP) for PICO extraction. However, the performance is not optimal due to the complexity of PICO information in RCT abstracts and the challenges involved in their annotation.
View Article and Find Full Text PDFBackground: The PubMed database contains more than 34 million articles; consequently, it is becoming increasingly difficult for a biomedical researcher to keep up-to-date with different knowledge domains. Computationally efficient and interpretable tools are needed to help researchers find and understand associations between biomedical concepts. The goal of literature-based discovery (LBD) is to connect concepts in isolated literature domains that would normally go undiscovered.
View Article and Find Full Text PDFBackground: The Nile rat (Avicanthis niloticus) is an important animal model because of its robust diurnal rhythm, a cone-rich retina, and a propensity to develop diet-induced diabetes without chemical or genetic modifications. A closer similarity to humans in these aspects, compared to the widely used Mus musculus and Rattus norvegicus models, holds the promise of better translation of research findings to the clinic.
Results: We report a 2.
Multiple sclerosis (MS), a chronic autoimmune disorder, affects the central nervous system of many young adults. More than half of MS patients develop cognition problems. Although several genomic and transcriptomic studies are currently reported in MS cognitive impairment, a comprehensive repository dealing with all the experimental data is still underdeveloped.
View Article and Find Full Text PDFText mining is an important research area to be explored in terms of understanding disease associations and have an insight in disease comorbidities. The reason for comorbid occurrence in any patient may be genetic or molecular interference from any other processes. Comorbidity and multimorbidity may be technically different, yet still are inseparable in studies.
View Article and Find Full Text PDFDrug-drug interactions (DDIs) and adverse drug reactions (ADR) are experienced by many patients, especially by elderly population due to their multiple comorbidities and polypharmacy. Databases such as PubMed contain hundreds of abstracts with DDI and ADR information. PubMed is being updated every day with thousands of abstracts.
View Article and Find Full Text PDFDrug-drug interactions (DDIs) and adverse drug reactions (ADRs) occur during the pharmacotherapy of multiple comorbidities and in susceptible individuals. DDIs and ADRs limit the therapeutic outcomes in pharmacotherapy. DDIs and ADRs have significant impact on patients' life and health care cost.
View Article and Find Full Text PDFMultiple sclerosis, a disease of central nervous system leads to potential disability. In the USA, one million cases are diagnosed with multiple sclerosis in 2019. Multiple sclerosis is identified as one of the diseases causing global burden.
View Article and Find Full Text PDFThe published biomedical articles are the best source of knowledge to understand the importance of biomedical entities such as disease, drugs, and their role in different patient population groups. The number of biomedical literature available and being published is increasing at an exponential rate with the use of large scale experimental techniques. Manual extraction of such information is becoming extremely difficult because of the huge number of biomedical literature available.
View Article and Find Full Text PDFJ Pharmacol Toxicol Methods
August 2021
Alzheimer's disease (AD) is regarded as one of the significant health burdens, as the prevalence is raising worldwide and gradually reaching to epidemic proportions. Consequently, a number of scientific investigations have been initiated to derive therapeutics to combat AD with a concurrent advancement in pharmacological methods and experimental models. Whilst, the available experimental pharmacological approaches both in vivo and in vitro led to the development of AD therapeutics, the precise manner by which experimental models mimic either one or more biomarkers of human pathology of AD is gaining scientific attentions.
View Article and Find Full Text PDFProteins perform their functions by interacting with other proteins. Protein-protein interaction (PPI) is critical for understanding the functions of individual proteins, the mechanisms of biological processes, and the disease mechanisms. High-throughput experiments accumulated a huge number of PPIs in PubMed articles, and their extraction is possible only through automated approaches.
View Article and Find Full Text PDFWe recently conducted a large association analysis to compare the genetic profiles between patients with psoriatic arthritis (PsA) and cutaneous-only psoriasis (PsC). Despite including over 7,000 genotyped patients, only the MHC achieved genome-wide significance. In this study, we hypothesized that appropriate epigenomic elements (H3K27ac marks for active enhancers) can guide us to reveal valuable information about the loci with suggestive evidence of association.
View Article and Find Full Text PDFSystemic lupus erythematosus (SLE) is a complex autoimmune disease in which 70% of patients experience disfiguring skin inflammation (grouped under the rubric of cutaneous lupus erythematosus [CLE]). There are limited treatment options for SLE and no Food and Drug Administration-approved therapies for CLE. Studies have revealed that IFNs are important mediators for SLE and CLE, but the mechanisms by which IFNs lead to disease are still poorly understood.
View Article and Find Full Text PDFAtopic dermatitis (AD) affects up to 20% of children and adults worldwide. To gain a deeper understanding of the pathophysiology of AD, we conducted a large-scale transcriptomic study of AD with deeply sequenced RNA-sequencing samples using long (126-bp) paired-end reads. In addition to the comparisons against previous transcriptomic studies, we conducted in-depth analysis to obtain a high-resolution view of the global architecture of the AD transcriptome and contrasted it with that of psoriasis from the same cohort.
View Article and Find Full Text PDFOrnithine decarboxylase (ODC) is an immediate precursor of polyamine biosynthesis in Serratia marcescens and a potential target for inhibition of its growth. We predicted the 3D structural conformation of ODC enzyme and validated it using MDS in our previous study. In this current study, the potential inhibitors of ODC were obtained by virtual screening of potential inhibitors from ZINC database and studied in depth for their different binding pose.
View Article and Find Full Text PDFImmune-mediated diseases affect more than 20% of the population, and many autoimmune diseases affect the skin. Drug repurposing (or repositioning) is a cost-effective approach for finding drugs that can be used to treat diseases for which they are currently not prescribed. We implemented an efficient bioinformatics approach using word embedding to summarize drug information from more than 20 million articles and applied machine learning to model the drug-disease relationship.
View Article and Find Full Text PDFPsoriatic arthritis (PsA) is a complex chronic musculoskeletal condition that occurs in ~30% of psoriasis patients. Currently, no systematic strategy is available that utilizes the differences in genetic architecture between PsA and cutaneous-only psoriasis (PsC) to assess PsA risk before symptoms appear. Here, we introduce a computational pipeline for predicting PsA among psoriasis patients using data from six cohorts with >7000 genotyped PsA and PsC patients.
View Article and Find Full Text PDF