Publications by authors named "Kalpana Nanjareddy"

Nitrogen is an essential macronutrient critical for plant growth and productivity. Plants have the capacity to uptake inorganic nitrate and ammonium, with nitrate playing a crucial role as a signaling molecule in various cellular processes. The availability of nitrate and the signaling pathways involved finely tune the processes of nitrate uptake and assimilation.

View Article and Find Full Text PDF

The rhizosphere influence on the soil microbiome and function of crop wild progenitors (CWPs) remains virtually unknown, despite its relevance to develop microbiome-oriented tools in sustainable agriculture. Here, we quantified the rhizosphere influence-a comparison between rhizosphere and bulk soil samples-on bacterial, fungal, protists and invertebrate communities and on soil multifunctionality across nine CWPs at their sites of origin. Overall, rhizosphere influence was higher for abundant taxa across the four microbial groups and had a positive influence on rhizosphere soil organic C and nutrient contents compared to bulk soils.

View Article and Find Full Text PDF

Amino acid transporters (AATs) are essential integral membrane proteins that serve multiple roles, such as facilitating the transport of amino acids across cell membranes. They play a crucial role in the growth and development of plants. Phaseolus vulgaris, a significant legume crop, serves as a valuable model for studying root symbiosis.

View Article and Find Full Text PDF

Cysteine-rich receptor-like kinases (CRKs) are a type of receptor-like kinases (RLKs) that are important for pathogen resistance, extracellular reactive oxygen species (ROS) signaling, and programmed cell death in plants. In a previous study, we identified 46 CRK family members in the genome and found that was highly upregulated under root nodule symbiotic conditions. To better understand the role of in the - symbiotic interaction, we functionally characterized this gene by overexpressing (-OE) and silencing (-RNAi) it in a hairy root system.

View Article and Find Full Text PDF

() a Ser/Thr protein kinase, is known to play a crucial role in plants during biotic and abiotic stress responses by activating protein phosphorylation pathways. and some members of the plant-specific and sub-families have been studied in different plant species. However, a comprehensive study of the gene family in is not available.

View Article and Find Full Text PDF

Premise: -induced hairy root systems are one of the most preferred and versatile systems for the functional characterization of genes. The use of hairy root systems is a rapid and convenient alternative for studying root biology, biotic and abiotic stresses, and root symbiosis in in vitro recalcitrant legume species such as .

Methods And Results: We present a rapid, simplified method for the generation of composite plants with transgenic hairy roots.

View Article and Find Full Text PDF

Macroautophagy/autophagy is a fundamental catabolic pathway that maintains cellular homeostasis in eukaryotic cells by forming double-membrane-bound vesicles named autophagosomes. The autophagy family genes remain largely unexplored except in some model organisms. Legumes are a large family of economically important crops, and knowledge of their important cellular processes is essential.

View Article and Find Full Text PDF

Target of rapamycin (TOR) is a conserved central growth regulator in eukaryotes that has a key role in maintaining cellular nutrient and energy status. Arbuscular mycorrhizal (AM) fungi are mutualistic symbionts that assist the plant in increasing nutrient absorption from the rhizosphere. However, the role of legume TOR in AM fungal symbiosis development has not been investigated.

View Article and Find Full Text PDF

Receptor-like kinases (RLKs) are conserved upstream signaling molecules that regulate several biological processes, including plant development and stress adaptation. Cysteine (C)-rich receptor-like kinases (CRKs) are an important class of RLK that play vital roles in disease resistance and cell death in plants. Genome-wide analyses of genes have been carried out in and rice, while functional characterization of some CRKs has been carried out in wheat and tomato in addition to .

View Article and Find Full Text PDF

The upstream sequences of gene coding sequences are termed as promoter sequences. Studying the expression patterns of promoters are very significant in understanding the gene regulation and spatiotemporal expression patterns of target genes. On the other hand, it is also critical to establish promoter evaluation tools and genetic transformation techniques that are fast, efficient, and reproducible.

View Article and Find Full Text PDF

BYPASS1 (), which is a well-conserved gene in plants, is required for normal root and shoot development. In the absence of gene function, overproduces a mobile signalling compound (the signal) in roots, and this transmissible signal arrests shoot growth and causes abnormal root development. In addition to the shoot and root meristem activities, the legumes also possess transient meristematic activity in root cortical cells during symbiosis.

View Article and Find Full Text PDF

Legumes participate in two important endosymbiotic associations, with phosphorus-acquiring arbuscular mycorrhiza (AM, soil fungi) and with nitrogen-fixing bacterial rhizobia. These divergent symbionts share a common symbiotic signal transduction pathway that facilitates the establishment of mycorrhization and nodulation in legumes. However, the unique and shared downstream genes essential for AM and nodule development have not been identified in crop legumes.

View Article and Find Full Text PDF

The target of rapamycin (TOR) protein kinase regulates metabolism, growth, and life span in yeast, animals, and plants in coordination with nutrient status and environmental conditions. The nutrient-dependent nature of TOR functionality makes this kinase a putative regulator of symbiotic associations involving nutrient acquisition. However, TOR's role in these processes remains to be understood.

View Article and Find Full Text PDF

Background: Phaseolus vulgaris is one of the most extensively studied model legumes in the world. The P. vulgaris genome sequence is available; therefore, the need for an efficient and rapid transformation system is more imperative than ever.

View Article and Find Full Text PDF

Nitrogen-limited conditions are considered to be a prerequisite for legume-rhizobial symbiosis, but the effects of nitrate-rich conditions on symbiotic status remain poorly understood. We addressed this issue by examining rhizobial (Rhizobim tropici) and arbusclar mycorrhizal (Glomus intraradices) symbiosis in Phaseolus vulgaris L. cv.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3i8d0lg8e5hg74e5rs7t5hm0911jluch): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once