The interferon stimulated gene 15 (ISG15), a ubiquitin like protein and its conjugates have been implicated in various human malignancies. However, its role in ovarian cancer progression and metastasis is largely unknown. In high grade serous ovarian cancer (HGSOC), ascites is the major contributor to peritoneal metastasis.
View Article and Find Full Text PDFThe role of extracellular vesicles (EVs) in human health and disease has garnered considerable attention over the past two decades. However, while several types of EVs are known to interact dynamically with the extracellular matrix and there is great potential value in producing high-fidelity EV micropatterns, there are currently no label-free, high-resolution, and tunable platform technologies with this capability. We introduce Light-induced Extracellular Vesicle Adsorption (LEVA) as a powerful solution to rapidly advance the study of matrix- and surface-bound EVs and other particles.
View Article and Find Full Text PDFIntroduction: Ovarian cancer (OC) is the deadliest gynecologic malignancy, with an overall 5-year survival rate of less than 30%. The existing paradigm for OC detection involves a serum marker, CA125, and ultrasound examination, neither of which is sufficiently specific for OC. This study addresses this deficiency through the use of a targeted ultrasound microbubble directed against tissue factor (TF).
View Article and Find Full Text PDFBackground: Ovarian clear cell carcinoma (OCCC) accounts for approximately 8-10% of epithelial ovarian cancers in the United States. Although it is rare, OCCC usually presents with treatment challenges and the overall prognosis is far worse than high grade serous ovarian cancer HGSOC. The objective of this study was to examine the therapeutic relevance of combining oncolytic virus with cisplatin for ovarian cancer clear cell carcinoma (OCCC).
View Article and Find Full Text PDFIntroduction: TMEM205 is a novel transmembrane protein associated with platinum resistance (PR) in epithelial ovarian carcinoma (OC), however, the specific mechanisms associated with this resistance remain to be elucidated.
Methods: TMEM205 expression was evaluated in platinum-sensitive (PS) versus platinum resistant (PR) ovarian cancer cell lines and patient serum/tissues. Exosomal efflux of platinum was evaluated with inductively coupled plasma mass spectrometry (ICP-MS) after pre-treatment with small molecule inhibitors (L-2663/L-2797) of TMEM205 prior to treatment with platinum.
Because of limits on specificity and purity to allow for in-depth protein profiling, a standardized method for exosome isolation has yet to be established. In this study, we describe a novel, in-house microfluidic-based device to isolate exosomes from culture media and patient samples. This technology overcomes contamination issues because sample separation is based on the expression of highly specific surface markers CD63 and EpCAM.
View Article and Find Full Text PDFExosomes are nanoscale vesicles found in many bodily fluids which play a significant role in cell-to-cell signaling and contain biomolecules indicative of their cells of origin. Recently, microfluidic devices have provided the ability to efficiently capture exosomes based on specific membrane biomarkers, but releasing the captured exosomes intact and label-free for downstream characterization and experimentation remains a challenge. We present a herringbone-grooved microfluidic device which is covalently functionalized with antibodies against general and cancer exosome membrane biomarkers (CD9 and EpCAM) to isolate exosomes from small volumes of high-grade serous ovarian cancer (HGSOC) serum.
View Article and Find Full Text PDFHypoxia-mediated tumor progression, metastasis, and drug resistance are major clinical challenges in ovarian cancer. Exosomes released in the hypoxic tumor microenvironment may contribute to these challenges by transferring signaling proteins between cancer cells and normal cells. We observed that ovarian cancer cells exposed to hypoxia significantly increased their exosome release by upregulating Rab27a, downregulating Rab7, LAMP1/2, NEU-1, and also by promoting a more secretory lysosomal phenotype.
View Article and Find Full Text PDFExosomes are nano-sized (20-100nm) vesicles released by a variety of cells and are generated within the endosomal system or at the plasma membrane. There is emerging evidence that exosomes play a key role in intercellular communication in ovarian and other cancers. The protein and microRNA content of exosomes has been implicated in various intracellular processes that mediate oncogenesis, tumor spread, and drug resistance.
View Article and Find Full Text PDF