We discuss the spread of a piece of news in a population. This is modeled by SIR model of epidemic spread. The model can be reduced to a nonlinear differential equation for the number of people affected by the news of interest.
View Article and Find Full Text PDFThe SIR model of epidemic spreading can be reduced to a nonlinear differential equation with an exponential nonlinearity. This differential equation can be approximated by a sequence of nonlinear differential equations with polynomial nonlinearities. The equations from the obtained sequence are treated by the Simple Equations Method (SEsM).
View Article and Find Full Text PDFThe goal of this article is to discuss the Simple Equations Method (SEsM) for obtaining exact solutions of nonlinear partial differential equations and to show that several well-known methods for obtaining exact solutions of such equations are connected to SEsM. In more detail, we show that the Hirota method is connected to a particular case of SEsM for a specific form of the function from Step 2 of SEsM and for simple equations of the kinds of differential equations for exponential functions. We illustrate this particular case of SEsM by obtaining the three- soliton solution of the Korteweg-de Vries equation, two-soliton solution of the nonlinear Schrödinger equation, and the soliton solution of the Ishimori equation for the spin dynamics of ferromagnetic materials.
View Article and Find Full Text PDFWe discuss the motion of substance in a channel containing nodes of a network. Each node of the channel can exchange substance with: (i) neighboring nodes of the channel, (ii) network nodes which do not belong to the channel, and (iii) environment of the network. The new point in this study is that we assume possibility for exchange of substance among flows of substance between nodes of the channel and: (i) nodes that belong to the network but do not belong to the channel and (ii) environment of the network.
View Article and Find Full Text PDF