Design of highly efficient phosphorescent emitters based on metal- and heavy atom-free boron compounds has been demonstrated by taking advantage of the singlet fission process. The combination of a suitable molecular scaffold and appropriate electronic nature of the substituents has been utilized to tailor the phosphorescence emission properties in solution, neat solid, and in doped PMMA thin films.
View Article and Find Full Text PDFThe synthesis, photophysical, and electrochemical attributes of a novel class of boron difluorides containing an aromatic-fused alicyclic/hetero-alicyclic ring built on a β-iminoenamine chromophoric backbone are reported. The compounds displayed large Stokes shifts (86-121 nm), and were emissive in the solid state. The quantum yields obtained in solution at room temperature were unusually lower by an order of magnitude compared to those in the solid state.
View Article and Find Full Text PDF