Publications by authors named "Kallunki T"

Cholesterol homeostasis is essential for healthy mammalian cells and dysregulation of cholesterol metabolism contributes to the pathogenesis of various diseases including cancer. Cancer cells are dependent on cholesterol. Malignant progression is associated with high cellular demand for cholesterol, and extracellular cholesterol uptake is often elevated in cancer cell to meet its metabolic needs.

View Article and Find Full Text PDF

Patient-derived organoids (PDOs) are ideal ex vivo model systems to study cancer progression and drug resistance mechanisms. Here, we present a protocol for measuring drug efficacy in three-dimensional (3D) high-grade serous ovarian cancer PDO cultures through quantification of cytotoxicity using propidium iodide incorporation in dead cells. We also provide detailed steps to analyze proliferation of PDOs using the Ki67 biomarker.

View Article and Find Full Text PDF

Cancer cells are dependent on cholesterol, and they possess strictly controlled cholesterol homeostasis mechanisms. These allow them to smoothly switch between cholesterol synthesis and uptake to fulfill their needs and to adapt environmental changes. Here we describe a mechanism of how cancer cells employ oncogenic growth factor signaling to promote uptake and utilization of extracellular cholesterol via Myeloid Zinc Finger 1 (MZF1)-mediated Niemann Pick C1 (NPC1) expression and upregulated macropinocytosis.

View Article and Find Full Text PDF
Article Synopsis
  • Ovarian high-grade serous carcinoma (HGSC) is usually detected at advanced stages, and the tumors contain many genetically diverse clones before treatment begins.
  • The study analyzed 510 samples from 148 patients, identifying three unique evolutionary states with different genomic features and treatment responses, along with two main paths of evolution between those states.
  • Additional experiments on tumor organoids suggest that targeting the PI3K/AKT pathway with the drug alpelisib could be effective, and it was found that samples from the original tumor sites had significantly more unique clones compared to metastatic sites.
View Article and Find Full Text PDF

Ovarian cancer is the deadliest gynecological cancer, the high-grade serous ovarian carcinoma (HGSC) being its most common and most aggressive form. Despite the latest therapeutical advancements following the introduction of vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors and poly-ADP-ribose-polymerase (PARP) inhibitors to supplement the standard platinum- and taxane-based chemotherapy, the expected overall survival of HGSC patients has not improved significantly from the five-year rate of 42%. This calls for the development and testing of more efficient treatment options.

View Article and Find Full Text PDF

Docetaxel (DTX) was the first chemotherapeutic agent to demonstrate significant efficacy in the treatment of men with metastatic castration-resistant prostate cancer. However, response to DTX is generally short-lived, and relapse eventually occurs due to emergence of drug-resistance. We previously established two DTX-resistant prostate cancer cell lines, LNCaP and C4-2B, derived from the androgen-dependent LNCaP cell line, and from the LNCaP lineage-derived androgen-independent C4-2B sub-line, respectively.

View Article and Find Full Text PDF

Purpose: Most HER2 positive invasive cancers are either intrinsic non-responsive or develop resistance when treated with 1st line HER2 targeting drugs. Both 1st and 2nd line treatments of HER2 positive cancers are aimed at targeting the HER2 receptor directly, thereby strongly limiting the treatment options of HER2/ErbB2 inhibition resistant invasive cancers.

Methods: We used phenotypic high throughput microscopy screening to identify efficient inhibitors of ErbB2-induced invasion using 1st line HER2 inhibitor trastuzumab- and pertuzumab-resistant, p95-ErbB2 expressing breast cancer cells in conjunction with the Prestwick Chemical Library®.

View Article and Find Full Text PDF

Anti-cancer treatments have never been so numerous and so efficient [...

View Article and Find Full Text PDF

Over 90% of cancer deaths are due to cancer cells metastasizing into other organs. Invasion is a prerequisite for metastasis formation. Thus, inhibition of invasion can be an efficient way to prevent disease progression in these patients.

View Article and Find Full Text PDF

Inducible gene expression systems are favored over stable expression systems in a wide variety of basic and applied research areas, including functional genomics, gene therapy, tissue engineering, biopharmaceutical protein production and drug discovery. This is because they are mostly reversible and thus more flexible to use. Furthermore, compared to constitutive expression, they generally exhibit a higher efficiency and have fewer side effects, such as cell death and delayed growth or development.

View Article and Find Full Text PDF

HER2/ErbB2 activation turns on transcriptional processes that induce local invasion and lead to systemic metastasis. The early transcriptional changes needed for ErbB2-induced invasion are poorly understood. Here, we link ErbB2 activation to invasion via ErbB2-induced, SUMO-directed phosphorylation of a single serine residue, S27, of the transcription factor myeloid zinc finger-1 (MZF1).

View Article and Find Full Text PDF

Cancer cells utilize lysosomes for invasion and metastasis. Myeloid Zinc Finger1 (MZF1) is an ErbB2-responsive transcription factor that promotes invasion of breast cancer cells via upregulation of lysosomal cathepsins B and L. Here we identify let-7 microRNA, a well-known tumor suppressor in breast cancer, as a direct negative regulator of MZF1.

View Article and Find Full Text PDF

SCAN domains in zinc-finger transcription factors are crucial mediators of protein-protein interactions. Up to 240 SCAN-domain encoding genes have been identified throughout the human genome. These include cancer-related genes, such as the myeloid zinc finger 1 (), an oncogenic transcription factor involved in the progression of many solid cancers.

View Article and Find Full Text PDF

ERBB2 amplification and overexpression are strongly associated with invasive cancer with high recurrence and poor prognosis. Enhanced ErbB2 signaling induces cysteine cathepsin B and L expression leading to their higher proteolytic activity (zFRase activity), which is crucial for the invasion of ErbB2-positive breast cancer cells in vitro. Here we introduce a simple screening system based on zFRase activity as a primary readout and a following robust invasion assay and lysosomal distribution analysis for the identification of compounds that can inhibit ErbB2-induced invasion.

View Article and Find Full Text PDF

Cell migration and invasion require increased plasma membrane dynamics and ability to navigate through dense stroma, thereby exposing plasma membrane to tremendous physical stress. Yet, it is largely unknown how metastatic cancer cells acquire an ability to cope with such stress. Here we show that S100A11, a calcium-binding protein upregulated in a variety of metastatic cancers, is essential for efficient plasma membrane repair and survival of highly motile cancer cells.

View Article and Find Full Text PDF

Overexpression and activation of ErbB2 receptor tyrosine kinase in breast cancer is strongly linked to an aggressive disease with high potential for invasion and metastasis. In addition to inducing very aggressive, metastatic cancer, ErbB2 activation mediates processes such as increased cancer cell proliferation and survival and is needed for normal physiological activities, such as heart function and development of the nervous system. How does ErbB2 activation make cancer cells invasive and when? Comprehensive understanding of the cellular mechanisms leading to ErbB2-induced malignant processes is necessary for answering these questions.

View Article and Find Full Text PDF

Misregulation of acid-base transport plays central roles in cancer development. We previously demonstrated the strong up-regulation of the Na(+),HCO3(-) cotransporter NBCn1 (SLC4A7) in MCF-7 breast cancer cells by a truncated, constitutively active ErbB2 (HER2) receptor, ΔNErbB2, and showed that NBCn1 expression and activity are increased in breast cancer tissue from patients. Here, we present the first in-depth characterization of an SLC4A7 promoter and identify its minimal ΔNErbB2-sensitive region.

View Article and Find Full Text PDF

Rapidly dividing and invasive cancer cells are strongly dependent on effective lysosomal function. Accordingly, transformation and cancer progression are characterized by dramatic changes in lysosomal volume, composition and cellular distribution. Depending on one's point of view, the cancer-associated changes in the lysosomal compartment can be regarded as friends or foes.

View Article and Find Full Text PDF

Comment on: Rafn B, et al. Mol Cell 2012; 45:764-76.

View Article and Find Full Text PDF

Aberrant ErbB2 receptor tyrosine kinase activation in breast cancer is strongly linked to an invasive disease. The molecular basis of ErbB2-driven invasion is largely unknown. We show that cysteine cathepsins B and L are elevated in ErbB2 positive primary human breast cancer and function as effectors of ErbB2-induced invasion in vitro.

View Article and Find Full Text PDF

Ras is one of the most frequently activated oncogenes in cancer. Two mitogen-activated protein kinases (MAPKs) are important for ras transformation: extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase 2 (JNK2). Here we present a downstream signal amplification cascade that is critical for ras transformation in murine embryonic fibroblasts.

View Article and Find Full Text PDF

Macroautophagy is a catabolic process that maintains cellular homeostasis and protects cells against various external stresses including starvation. Except for the identification of the Akt-mTORC1 pathway as a major negative regulator, little is known about signaling networks that control macroautophagy under optimal growth conditions. Therefore, we screened a human kinome siRNA library for siRNAs that increase the number of autophagosomes in normally growing MCF-7 human breast carcinoma cells, and identified 10 kinases as regulators of constitutive macroautophagy.

View Article and Find Full Text PDF

Cell migration is the consequence of the sum of positive and negative regulatory mechanisms. Although appropriate migration of neurons is a principal feature of brain development, the negative regulatory mechanisms remain obscure. We found that JNK1 was highly active in developing cortex and that selective inhibition of JNK in the cytoplasm markedly increased both the frequency of exit from the multipolar stage and radial migration rate and ultimately led to an ill-defined cellular organization.

View Article and Find Full Text PDF

Familial dysautonomia (FD) is a hereditary neuronal disease characterized by poor development and progressive degeneration of the sensory and autonomic nervous system. Majority of FD (99.5%) results from a single nucleotide point mutation in the IKBKAP gene encoding IKAP, also known as elongation protein 1 (ELP1).

View Article and Find Full Text PDF

The c-Jun N-terminal kinase (JNK) signalling pathway has an established role in cellular stress signalling, cell survival and tumorigenesis. Here, we demonstrate that inhibition of JNK signalling results in partial delocalization of the RNA helicase DDX21 from the nucleolus to the nucleoplasm, increased nucleolar mobility of DDX21 and inhibition of rRNA processing. Furthermore, our results show that JNK signalling regulates DDX21 phosphorylation and protein expression.

View Article and Find Full Text PDF