Background & Objective: Diabetes is a global health problem that has resulted in millions of deaths; one of the most common diabetes complications is that wounds of diabetic patients tend to heal more slowly or may not heal at all, resulting in undesirable outcomes. Diabetic wounds, if become chronic and infected, could provoke lower extremities amputation, sepsis, and even death. Hence, early detection, careful examination, debridement, cleaning, and prevention or controlling the infection of diabetic wounds are important factors for the successful outcome of the case.
View Article and Find Full Text PDFThe present study evaluates the effect of molecular mobility and molecular interactions in the physical stability of rivaroxaban (RIV) - soluplus® (SOL) amorphous solid dispersions (ASDs). Initially, the use of Adam-Gibbs approach revealed that RIV's molecular mobility (below its glass transition temperature) is significantly reduced in the presence of SOL, while the use of ATR-FTIR spectroscopy showed the formation of hydrogen bonds (HBs) between the two ASD components, indicating that these two mechanisms can be considered as responsible for system's physical stability. Contrary to previously published reports, the utilization of ATR-FTIR spectroscopy in the present study was able to clarify, for the first time, the type of intermolecular interactions formed within the examined ASD system, while the presence of a separate drug-rich amorphous phase (significantly increasing as the content of the drug increases) was also identified.
View Article and Find Full Text PDF