Publications by authors named "Kalle-Pekka Nera"

The transcription factor Bach2 is required for germinal center formation, somatic hypermutation (SHM), and class-switch recombination (CSR) of immunoglobulins. SHM and CSR are initiated by activation-induced cytidine deaminase (AID) which has potential to induce human B cell lymphoma. To understand the role of Bach2 in AID-mediated immunoglobulin gene diversification processes, we established a BACH2-deficient DT40 B cell line.

View Article and Find Full Text PDF

The transcription factor Bcl6 regulates germinal center formation and differentiation of B cells into high-affinity antibody-producing plasma cells. The direct double-negative regulatory circuit between Bcl6 and Blimp-1 is well established. We now reveal alternative mechanisms for Bcl6-mediated regulation of B-cell differentiation to plasma cells and show with DT40 cells that Bcl6 directly promotes the expression of Bach2, a known suppressor of Blimp-1.

View Article and Find Full Text PDF

Ikaros family transcription factors have a key role in lymphoid development, and their aberrant function contributes to a multitude of lymphoid malignancies. Ikaros and Helios bind to similar DNA sequences, and Helios associates with Ikaros-containing chromatin remodeling complexes. Previously, we have shown that loss of Ikaros leads to diminished BCR-signaling strength.

View Article and Find Full Text PDF

A key issue in understanding the hematopoietic system and B cell biology is to define the function of transcription factors. B lymphocyte development and function is controlled by a hierarchy of transcription factors including PU.1, Ikaros, E2A, EBF, Pax5 and Aiolos.

View Article and Find Full Text PDF

Pax5 is indispensable for the commitment of early lymphoid progenitors to the B cell lineage as well as for the development of B cells. To better understand the functional importance of Pax5 at the later stages of B cell differentiation, we established a Pax5-deficient DT40 B cell line. The Pax5(-/-) cells exhibited slower growth, decreased surface IgM expression, and total loss of B cell receptor signaling.

View Article and Find Full Text PDF

The transcription factor Ikaros, a key regulator of hematopoiesis, has an essential role in lymphocyte development. In mice, fetal lymphoid differentiation is blocked in the absence of Ikaros, and whereas T cells develop postnatally, B cells are totally absent. The significance of Ikaros in the B cell development is evident, but how Ikaros regulates B cell function has neither been established nor previously been studied with B cells that lack Ikaros expression.

View Article and Find Full Text PDF