Acute myocardial infarction (AMI) is one of the top contributors to global disease mortality. AMI biomarkers, such as cardiac troponin I (cTnI), are often detected with enzyme-linked immunosorbent assay (ELISA) that suffers from several well-known drawbacks such as poor stability and slow and cumbersome operation. Therefore, it is necessary to develop a new analytical technique that can rapidly analyse and detect cTnI for early screening of AMI.
View Article and Find Full Text PDFImatinib (Ima), as a commonly used anticancer drug for the clinical treatment of leukemia and gastrointestinal mesenchymal stromal tumour, requires timely monitoring of patients' blood concentration to ensure efficacy while reducing complications and achieving precision medicine due to its narrow therapeutic window (1-5 μM) and the varying sensitivity and resistance of different patients to Ima. However, traditional assays are slow and cumbersome, so improved and innovative platforms for monitoring Ima in the clinic are necessary. In this work, a nanoporous electrochemical aptamer-based (E-AB) sensor was designed for the detection of Ima and imatinib mesylate (Ima-Mes) in blood.
View Article and Find Full Text PDFReal-time, high-frequency measurements of pharmaceuticals, metabolites, exogenous antigens, and other biomolecules in biological samples can provide critical information for health management and clinical diagnosis. Electrochemical aptamer-based (EAB) sensor is a promising analytical technique capable of achieving these goals. However, the issues of insufficient sensitivity, frequent calibration and lack of adapted portable electrochemical device limit its practical application in immediate detection.
View Article and Find Full Text PDFCocaine is one of the most abused illicit drugs, and its abuse damages the central nervous system and can even lead directly to death. Therefore, the development of simple, rapid and highly sensitive detection methods is crucial for the prevention and control of drug abuse, traffic accidents and crime. In this work, an electrochemical aptamer-based (EAB) sensor based on the low-temperature enhancement effect was developed for the direct determination of cocaine in bio-samples.
View Article and Find Full Text PDFBackground: The fabrication of sensors capable of achieving rapid, sensitive, and highly selective detection of target molecules in complex fluids is key to realizing their real-world applications. For example, there is an urgent need in drugged driving roadside screening scenarios to develop a method that can be used for rapid drug detection and that avoids interference from the matrix in the sample. How to minimize the interference of complex matrices in biofluids at the electrode interface is the key to improve the sensitivity of the sensor.
View Article and Find Full Text PDFThe sensing technologies for monitoring molecular analytes in biological fluids with high frequency and in real time could enable a broad range of applications in personalized healthcare and clinical diagnosis. However, due to the limited dynamic range (less than 81-fold), real-time analysis of biomolecular concentration varying over multiple orders of magnitude is a severe challenge faced by this class of analytical platforms. For the first time, we describe here that temperature-modulated electrochemical aptamer-based sensors with a dynamically adjustable calibration-free detection window could enable continuous, real-time, and accurate response for the several-hundredfold target concentration changes in unprocessed actual samples.
View Article and Find Full Text PDFNovel hot electron-emitting working electrodes and conventional counter electrodes were created by screen printing. Thus, low-cost disposable electrode chips for bioaffinity assays were produced to replace our older expensive electrode chips manufactured by manufacturing techniques of electronics from silicon or on glass chips. The present chips were created by printing as follows: (i) silver lines provided the electronic contacts, counter electrode and the bottom of the working electrode and counter electrode, (ii) the composite layer was printed on appropriate parts of the silver layer, and (iii) finally a hydrophobic ring was added to produce the electrochemical cell boundaries.
View Article and Find Full Text PDFTb(III) chelates exhibit intense hot electron-induced electrogenerated chemiluminescence during cathodic polarization of metal/polystyrene-graphite (M/PG) electrodes in fully aqueous solutions. The M/PG working electrode provides a sensitive means for the determination of aromatic Tb(III) chelates at nanomolar concentration levels with a linear log-log calibration curve spanning more than five orders of magnitude. The charge transport and other properties of these novel electrodes were studied by electrochemiluminescence measurements and cyclic voltammetry.
View Article and Find Full Text PDFHole injection into aqueous electrolyte solution is proposed to occur when oxide-coated aluminum electrode is anodically pulse-polarized by a voltage pulse train containing sufficiently high-voltage anodic pulses. The effects of anodic pulses are studied by using an aromatic Tb(III) chelate as a probe known to produce intensive hot electron-induced electrochemiluminescence (HECL) with plain cathodic pulses and preoxidized electrodes. The presently studied system allows injection of hot electrons and holes successively into aqueous electrolyte solutions and can be utilized in detecting electrochemiluminescent labels in fully aqueous solutions, and actually, the system is suggested to be quite close to a pulse radiolysis system providing hydrated electrons and hydroxyl radicals as the primary radicals in aqueous solution without the problems and hazards of ionizing radiation.
View Article and Find Full Text PDF