Publications by authors named "Kalinin S"

Scanning Transmission Electron Microscopy (STEM) coupled with Electron Energy Loss Spectroscopy (EELS) presents a powerful platform for detailed material characterization via rich imaging and spectroscopic data. Modern electron microscopes can access multiple length scales and sampling rates far beyond human perception and reaction time. Recent advancements in machine learning (ML) offer a promising avenue to enhance these capabilities by integrating ML algorithms into the STEM-EELS framework, fostering an environment of active learning.

View Article and Find Full Text PDF

Structurally diverse pyrroles, indoles and imidazoles bearing an -ω-azidoalkyl moiety and an aldehyde or ketone function were prepared and successfully introduced into imine generation the intramolecular Staudinger/aza-Wittig tandem reaction. Reduction of the generated imines led to medicinally relevant nitrogen-containing fused heterocycles such as tetrahydropyrrolo[1,2-]pyrazines and diazepines. Rare 8-membered hexahydropyrrolo[1,2-][1,4]diazocine and 9-membered dihydro-4,8-(metheno)pyrrolo[1,2-][1,4]diazacycloundecine were also synthesized.

View Article and Find Full Text PDF
Article Synopsis
  • The advancement of computation power and machine learning is enabling the automation of scientific discovery using scanning probe microscopes (SPM).* -
  • A new Python interface library has been created to control SPMs from both local and remote high-performance computers, meeting the computational demands of machine learning.* -
  • The developed platform allows for the operation of SPM in various workflows, facilitating automated processes for routine tasks and autonomous scientific research.*
View Article and Find Full Text PDF
Article Synopsis
  • Combinatorial spread libraries enable the study of material properties across various concentrations and conditions, but traditionally require extensive functional property measurements.
  • The authors introduce automated piezoresponse force microscopy (PFM) to efficiently analyze these libraries, specifically in the SmBiFeO system, which features a unique phase boundary between ferroelectric and antiferroelectric states.
  • By utilizing PFM and developing a mathematical framework based on Ginzburg-Landau theory, they aim to streamline materials discovery and make their data accessible for further research in the field.
View Article and Find Full Text PDF
Article Synopsis
  • * To speed up this process, integrating theory with automated experiments—known as "theory in the loop"—is becoming a key focus, allowing for real-time updates of theoretical models during experiments.
  • * The authors propose a Bayesian method that creates digital twins of materials by simultaneously developing surrogate models for simulations and experiments, reducing uncertainty, and enhancing research applications across various complex material properties.
View Article and Find Full Text PDF
Article Synopsis
  • Ferroelectric materials have the potential to transform information technology due to their low power use, quick speeds, and excellent durability, but there are challenges with integrating them into existing semiconductor technologies.
  • Recent research has shown promising ferroelectric properties in new binary oxides like ZnMgO, which could lead to practical applications.
  • The study identifies two distinct ferroelectric subsystems in ZnMgO and introduces a new mechanism for polarization switching, challenging traditional views on how these materials behave, which could advance both fundamental physics and technological applications.
View Article and Find Full Text PDF

This study introduces the integration of dynamic computer vision-enabled imaging with electron energy loss spectroscopy (EELS) in scanning transmission electron microscopy (STEM). This approach involves real-time discovery and analysis of atomic structures as they form, allowing us to observe the evolution of material properties at the atomic level, capturing transient states traditional techniques often miss. Rapid object detection and action system enhances the efficiency and accuracy of STEM-EELS by autonomously identifying and targeting only areas of interest.

View Article and Find Full Text PDF

It is widely accepted that the interaction of swift heavy ions with many complex oxides is predominantly governed by the electronic energy loss that gives rise to nanoscale amorphous ion tracks along the penetration direction. The question of how electronic excitation and electron-phonon coupling affect the atomic system through defect production, recrystallization, and strain effects has not yet been fully clarified. To advance the knowledge of the atomic structure of ion tracks, we irradiated single crystalline SrTiO with 629 MeV Xe ions and performed comprehensive electron microscopy investigations complemented by molecular dynamics simulations.

View Article and Find Full Text PDF

Mixed-cation and mixed-halide lead halide perovskites show great potential for their application in photovoltaics. Many of the high-performance compositions are made of cesium, formamidinium, lead, iodine, and bromine. However, incorporating bromine in iodine-rich compositions and its effects on the thermal stability of the perovskite structure has not been thoroughly studied.

View Article and Find Full Text PDF

Controlled fabrication of nanopores in 2D materials offer the means to create robust membranes needed for ion transport and nanofiltration. Techniques for creating nanopores have relied upon either plasma etching or direct irradiation; however, aberration-corrected scanning transmission electron microscopy (STEM) offers the advantage of combining a sub-Å sized electron beam for atomic manipulation along with atomic resolution imaging. Here, a method for automated nanopore fabrication is utilized with real-time atomic visualization to enhance the mechanistic understanding of beam-induced transformations.

View Article and Find Full Text PDF

The vast majority of current cereblon (CRBN) ligands is based on the thalidomide scaffold, relying on glutarimide as the core binding moiety. With this architecture, most of these ligands inherit the overall binding mode, interactions with neo-substrates, and thereby potentially also the cytotoxic and teratogenic properties of the parent thalidomide. In this work, by incorporating a spiro-linker to the glutarimide moiety, we have generated a new chemotype that exhibits an unprecedented binding mode for glutarimide-based CRBN ligands.

View Article and Find Full Text PDF

The rapid increase in the antibiotic resistance of microorganisms, capable of causing diseases in humans as destroying cultural heritage sites, is a great challenge for modern science. In this regard, it is necessary to develop fundamentally novel and highly active compounds. In this study, a series of -alkylcytidines, including 5- and 6-methylcytidine derivatives, with extended alkyl substituents, were obtained in order to develop a new generation of antibacterial and antifungal biocides based on nucleoside derivatives.

View Article and Find Full Text PDF

The broad adoption of machine learning (ML)-based autonomous experiments (AEs) in material characterization and synthesis requires strategies development for understanding and intervention in the experimental workflow. Here, we introduce and realize a post-experimental analysis strategy for deep kernel learning-based autonomous scanning probe microscopy. This approach yields real-time and post-experimental indicators for the progression of an active learning process interacting with an experimental system.

View Article and Find Full Text PDF

The clinical relevance of head and neck (H&N) tumors is related to the potential disfiguration of anatomical structures (by the tumor or surgical intervention), defining patients' individual features and emotional expression, loss or restraint of vital structures functions, and untoward socio-economic sequelae. This study is aimed to improve clinical outcomes of cryosurgery in patients with H&N basal cell skin cancer by refining the indications for cryosurgical treatment. In this study, cryosurgery was used in 234 patients with different stages of cutaneous basal cell carcinoma (BCC) of the head, including 101 patients with T1 tumors, 86-with T2, 5-T3, and 42 patients with tumors relapsing after failure of preceding various treatment modalities.

View Article and Find Full Text PDF

Ewing sarcoma (ES) is one of the most frequent types of malignant tumors among children. The active metabolic state of ES cells presents a new potential target for therapeutic interventions. As a primary regulator of cellular homeostasis, carbonic anhydrases (CAs; EC 4.

View Article and Find Full Text PDF

Nanoscale ferroelectric 2D materials offer the opportunity to investigate curvature and strain effects on materials functionalities. Among these, CuInPS (CIPS) has attracted tremendous research interest in recent years due to combination of room temperature ferroelectricity, scalability to a few layers thickness, and ferrielectric properties due to coexistence of 2 polar sublattices. Here, we explore the local curvature and strain effect on polarization in CIPS via piezoresponse force microscopy and spectroscopy.

View Article and Find Full Text PDF

Roles for lipocalin-2 (LCN2, also referred to as neutrophil gelatinase associated lipocalin, NGAL) in the progression of disease in multiple sclerosis and its animal models have been reported; however, the importance of astrocyte-derived LCN2, a major source of LCN2, have not been defined. We found that clinical scores in experimental autoimmune encephalomyelitis (EAE) were modestly delayed in mice with conditional knockout of LCN2 from astrocytes, associated with a small decrease in astrocyte GFAP expression. Immunostaining and qPCR of spinal cord samples showed decreased oligodendrocyte proteolipid protein and transcription factor Olig2 expression, but no changes in PDGFRα expression.

View Article and Find Full Text PDF
Article Synopsis
  • Ferroelectricity in binary oxides like hafnia and zirconia has gained attention for its unique physical mechanisms and potential use in semiconductors.
  • Recent studies indicate that the properties of these materials are influenced by various factors, including electrochemical conditions and strain, leading to unusual behaviors.
  • Research utilizing advanced microscopy reveals that these materials exhibit a range of ferroic behaviors, suggesting an antiferroionic model that could help optimize hafnia-based devices.
View Article and Find Full Text PDF

A chemoselective strategy toward a variety of fused heterocyclic scaffolds relying on a three-component condensation of heterocyclic ketene aminals (HKAs) or corresponding thioaminals with aryl glyoxals and cyclic 1,3-dicarbonyl compounds has been developed and explored. Depending on the applied combination of substrates, the strategy can be tuned to provide straightforward access to imidazo[1,2-]quinoline, pyrrolo[1,2-]imidazole, and pyrrolo[2,1-]thiazole frameworks.

View Article and Find Full Text PDF

The c-Jun amino terminal kinases (JNKs) regulate transcription, and studies suggest they contribute to neuropathology in the EAE model of MS. To examine the role of the JNK3 isoform, we compared EAE in JNK3 null mice to wild type (WT) littermates. Although disease severity was similar in female mice, in male JNK3 null mice the day of onset and time to reach 100% incidence occurred sooner, and disease severity was increased.

View Article and Find Full Text PDF
Article Synopsis
  • Quinoline-based sulfonyl derivatives, particularly sulfonamides, have potential in drug design due to their promising chemical structures.
  • A new synthesis method for creating 3-sulfonyl-substituted quinolines has been developed, utilizing a combination of Knoevenagel condensation and aza-Wittig reaction.
  • This method effectively uses -azidobenzaldehydes and ketosulfonamides or ketosulfones, yielding high-quality quinoline derivatives.
View Article and Find Full Text PDF

Underlying the rapidly increasing photovoltaic efficiency and stability of metal halide perovskites (MHPs) is the advancement in the understanding of the microstructure of polycrystalline MHP thin film. Over the past decade, intense efforts have been aimed at understanding the effect of microstructures on MHP properties, including chemical heterogeneity, strain disorder, phase impurity, etc. It has been found that grain and grain boundary (GB) are tightly related to lots of microscale and nanoscale behavior in MHP thin films.

View Article and Find Full Text PDF

A newly introduced diazo reagent, 1-diazo-N,N-bis(4-methoxybenzyl)methanesulfonamide, enables access to a range of azole-based primary sulfonamides via [3+2] cycloaddition followed by protecting group removal. Such compounds are representative of the sulfonamide chemical space highly relevant but hitherto not investigated in the context of inhibition of therapeutically relevant isoforms of carbonic anhydrase enzyme. Using this reagent, three sets of primary sulfonamides based on pyrazole, 1,2,3-triazole and tetrazole cores were synthesized and profiled for inhibition of tumor-associated hCA IX and XII isoforms as well as abundant cytosolic hCA I and II isoforms.

View Article and Find Full Text PDF

Electronic transport and hysteresis in metal halide perovskites (MHPs) are key to the applications in photovoltaics, light emitting devices, and light and chemical sensors. These phenomena are strongly affected by the materials microstructure including grain boundaries, ferroic domain walls, and secondary phase inclusions. Here, we demonstrate an active machine learning framework for "driving" an automated scanning probe microscope (SPM) to discover the microstructures responsible for specific aspects of transport behavior in MHPs.

View Article and Find Full Text PDF

Using hypothesis-learning-driven automated scanning probe microscopy (SPM), we explore the bias-induced transformations that underpin the functionality of broad classes of devices and materials from batteries and memristors to ferroelectrics and antiferroelectrics. Optimization and design of these materials require probing the mechanisms of these transformations on the nanometer scale as a function of a broad range of control parameters, leading to experimentally intractable scenarios. Meanwhile, often these behaviors are understood within potentially competing theoretical hypotheses.

View Article and Find Full Text PDF