Publications by authors named "Kalina Szteyn"

Extracellular vesicles (EVs) are associated with intercellular communications, immune responses, viral pathogenicity, cardiovascular diseases, neurological disorders, and cancer progression. EVs deliver proteins, metabolites, and nucleic acids into recipient cells to effectively alter their physiological and biological response. During their transportation from the donor to the recipient cell EVs face differential ionic concentrations, which can be detrimental to their integrity and impact their cargo content.

View Article and Find Full Text PDF
Article Synopsis
  • The calcium release activated calcium (CRAC) channel is vital in T lymphocytes for regulating immune functions, including T cell activation and cytokine production.
  • Mutations in CRAC channel components can lead to severe immune disorders like SCID and muscle diseases such as tubular aggregated myopathy (TAM).
  • Recent studies identified compound 4k as a promising selective blocker of the CRAC channel, effectively inhibiting T cell activity while sparing other channels like TRPM4 and TRPM7, potentially offering a new approach for therapeutic interventions.
View Article and Find Full Text PDF

To investigate the effects of (2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD), (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD), tocopherol polyethylene glycol 1000 succinate (TPGS), sodium desoxycholate (SDOCH), trimethyl chitosan (TMC), and sodium caprate (C10) on the plasma concentration and the oral bioavailability of tigecycline in broiler chickens. To test the effects of the excipients on absorption of tigecycline, a tetracycline that is poorly absorbed from the gastrointestinal tract, broiler chickens were used as an animal model. Tigecycline (10 mg/kg body weight) was administered intravenously, orally, and orally with one of the excipients.

View Article and Find Full Text PDF

BK channels are large-conductance calcium and voltage-activated potassium channels that are heterogeneously expressed in a wide array of cells. Activation of BK channels present in mitochondria of adult ventricular cardiomyocytes is implicated in cardioprotection against ischemia-reperfusion (IR) injury. However, the BK channel's activity has never been detected in the plasma membrane of adult ventricular cardiomyocytes.

View Article and Find Full Text PDF

The large-conductance calcium- and voltage-activated K channel (BK) are encoded by the gene. They are ubiquitously expressed in neuronal, smooth muscle, astrocytes, and neuroendocrine cells where they are known to play an important role in physiological and pathological processes. They are usually localized to the plasma membrane of the majority of the cells with an exception of adult cardiomyocytes, where BK is known to localize to mitochondria.

View Article and Find Full Text PDF
Article Synopsis
  • Toll-like receptors (TLRs) detect harmful patterns from pathogens, triggering inflammation through the production of cytokines, particularly in response to lipopolysaccharide (LPS) via TLR4.
  • The ion channel TRPM7 plays a crucial role in elevating cytosolic calcium levels, which are necessary for the activation of macrophages and the signaling pathways involving IRF3 and NFκB.
  • Mice lacking TRPM7 in their macrophages showed significantly reduced inflammatory responses to LPS, indicating the importance of TRPM7 and calcium signaling in mediating TLR4 activities.
View Article and Find Full Text PDF

Messenger RNA data of lymphohematopoietic cancer lines suggest a correlation between expression of the cation channel TRPM2 and the antiapoptotic protein Bcl-2. The latter is overexpressed in various tumor entities and mediates therapy resistance. Here, we analyzed the crosstalk between Bcl-2 and TRPM2 channels in T cell leukemia cells during oxidative stress as conferred by ionizing radiation (IR).

View Article and Find Full Text PDF

Glutamate serves as the primary excitatory neurotransmitter in the nervous system. Previous studies have identified a role for glutamate and group I metabotropic receptors as targets for study in peripheral inflammatory pain. However, the coordination of signaling events that transpire from receptor activation to afferent neuronal sensitization has not been explored.

View Article and Find Full Text PDF

Background/aims: Janus kinase-3 (JAK3) is activated during energy depletion. Energy-consuming pumps include the Na(+)/K(+)-ATPase. The present study explored whether JAK3 regulates Na(+)/K(+)-ATPase in dendritic cells (DCs).

View Article and Find Full Text PDF

Endothelin-1 (ET-1) and bradykinin (BK) are endogenous peptides that signal through Gαq/11-protein coupled receptors (GPCRs) to produce nociceptor sensitization and pain. Both peptides activate phospholipase C to stimulate Ca(2+) accumulation, diacylglycerol production, and protein kinase C activation and are rapidly desensitized via a G-protein receptor kinase 2-dependent mechanism. However, ET-1 produces a greater response and longer lasting nocifensive behavior than BK in multiple models, indicating a potentially divergent signaling mechanism in primary afferent sensory neurons.

View Article and Find Full Text PDF

Despite advances in understanding the signaling mechanisms involved in the development and maintenance of chronic pain, the pharmacologic treatment of chronic pain has seen little advancement. Agonists at the mu opioid receptor (MOPr) continue to be vital in the treatment of many forms of chronic pain, but side-effects limit their clinical utility and range from relatively mild, such as constipation, to major, such as addiction and dependence. Additionally, chronic activation of MOPr results in pain hypersensitivity known as opioid-induced hyperalgesia (OIH), and we have shown recently that recruitment of β-arrestin2 to MOPr, away from transient potential vanilloid eceptor type 1 (TRPV1) in primary sensory neurons contributes to this phenomenon.

View Article and Find Full Text PDF

The transient receptor potential family V1 channel (TRPV1) is activated by multiple stimuli, including capsaicin, acid, endovanilloids, and heat (>42C). Post-translational modifications to TRPV1 result in dynamic changes to the sensitivity of receptor activation. We have previously demonstrated that β-arrestin2 actively participates in a scaffolding mechanism to inhibit TRPV1 phosphorylation, thereby reducing TRPV1 sensitivity.

View Article and Find Full Text PDF

Platelets are activated by increased cytosolic Ca(2+) concentration ([Ca(2+)]i) following store-operated calcium entry (SOCE) accomplished by calcium-release-activated calcium (CRAC) channel moiety Orai1 and its regulator STIM1. In other cells, Ca(2+) transport is regulated by 1,25(OH)2 vitamin D3 [1,25(OH)2D3]. 1,25(OH)2D3 formation is inhibited by klotho and excessive in klotho-deficient mice (kl/kl).

View Article and Find Full Text PDF

Background/aims: The protein kinase Akt2/PKBβ is a known regulator of macrophage and dendritic cell (DC) migration. The mechanisms linking Akt2 activity to migration remained, however, elusive. DC migration is governed by Ca(2+) signaling.

View Article and Find Full Text PDF

Janus kinase 2 (JAK2) contributes to intracellular signaling of leptin and erythropoietin, hormones protecting cells during energy depletion. The present study explores whether JAK2 is activated by energy depletion and regulates Na(+)/K(+)-ATPase, the major energy-consuming pump. In Jurkat cells, JAK2 activity was determined by radioactive kinase assay, phosphorylated JAK2 detected by Western blotting, ATP levels measured by luciferase assay, as well as Na(+)/K(+)-ATPase α1-subunit transcript and protein abundance determined by real-time PCR and Western blotting, respectively.

View Article and Find Full Text PDF

Background/aims: The serum- and glucocorticoid-inducible kinase Sgk1 contributes to cardiac remodeling and development of heart failure, which is paralelled by Sgk1-dependent stimulation of the cardiac Na(+)/H(+) exchanger Nhe1. Glucocorticoids are powerful stimulators of Sgk1 expression and influence cardiac remodeling. The present study thus explored whether the glucocorticoid receptor agonist dexamethasone influenced cardiac Sgk1 expression, as well as activity, expression and phosphorylation at Ser(703) of the cardiac Na(+)/H(+) exchanger Nhe1.

View Article and Find Full Text PDF

Background/aims: Human parvovirus B19 (B19V) may cause inflammatory cardiomyopathy (iCMP) which is accompanied by endothelial dysfunction. The B19V capsid protein VP1 contains a lysophosphatidylcholine producing phospholipase A2 (PLA) sequence. Lysophosphatidylcholine has in turn been shown to inhibit Na(+)/K(+) ATPase.

View Article and Find Full Text PDF

The function of dendritic cells (DCs), antigen-presenting cells regulating naïve T-cells, is regulated by cytosolic Ca²⁺ concentration ([Ca²⁺]i). [Ca²⁺]i is increased by store-operated Ca²⁺ entry and decreased by K⁺-independent (NCX) and K⁺-dependent (NCKX) Na⁺/Ca²⁺ exchangers. NCKX exchangers are stimulated by immunosuppressive 1,25-dihydroxyvitamin D3 [1,25(OH)₂D₃], the biologically active form of vitamin D.

View Article and Find Full Text PDF

Background/aims: Dendritic cells (DCs) are antigen-presenting cells linking innate and adaptive immunity. DC maturation and migration are governed by alterations of cytosolic Ca(2+) concentrations ([Ca(2+)](i)). Ca(2+) entry is in part accomplished by store-operated Ca(2+) (SOC) channels consisting of the membrane pore-forming subunit Orai and the ER Ca(2+) sensing subunit STIM.

View Article and Find Full Text PDF

Background/aims: Migration of dendritic cells (DCs), antigen presenting cells that link innate and adaptive immunity, is critical for initiation of immune responses. DC migration is controlled by the activity of different ion channels, which mediate Ca(2+) flux or set the membrane potential. Moreover, cell migration requires local volume changes at the leading and rear end of travelling cells, which might be mediated by the fluxes of osmotically active solutes, including Cl(-).

View Article and Find Full Text PDF

Dendritic cells (DCs) are the most potent antigen-presenting cells equipped to transport antigens from the periphery to lymphoid tissues and to present them to T cells. Ligation of Toll-like receptor 4 (TLR4), expressed on the DC surface, by lipopolysaccharides (LPS), elements of the Gram-negative bacteria outer wall, induces DC maturation. Initial steps of maturation include stimulation of antigen endocytosis and enhanced reactive oxygen species (ROS) production with eventual downregulation of endocytic capacity in fully matured DCs.

View Article and Find Full Text PDF

In dendritic cells (DCs), chemotactic chemokines, such as CXCL12, rapidly increase cytosolic Ca(2+)concentrations ([Ca(2+)](i)) by triggering Ca(2+) release from intracellular stores followed by store-operated Ca(2+) (SOC) entry. Increase of [Ca(2+)](i) is blunted and terminated by Ca(2+) extrusion, accomplished by K(+)-independent Na(+)/Ca(2+) exchangers (NCXs) and K(+)-dependent Na(+)/Ca(2+) exchangers (NCKXs). Increased [Ca(2+)](i) activates energy-sensing AMP-activated protein kinase (AMPK), which suppresses proinflammatory responses of DCs and macrophages.

View Article and Find Full Text PDF

The serum and glucocorticoid-inducible kinase SGK1 increases the activity of Orai1, the pore forming unit of store-operated Ca(2+) entry, and thus influences Ca(2+)-dependent cellular functions such as migration. SGK1 further regulates transcription factor nuclear factor κB (NF-κB). This study explored whether SGK1 influences transcription of Orai1 and/or STIM1, the Orai1-activating Ca(2+) sensor.

View Article and Find Full Text PDF

Ca(2+) signaling includes store-operated Ca(2+) entry (SOCE) following depletion of endoplasmic reticulum (ER) Ca(2+) stores. On store depletion, the ER Ca(2+) sensor STIM1 activates Orai1, the pore-forming unit of Ca(2+)-release-activated Ca(2+) (CRAC) channels. Here, we show that Orai1 is regulated by serum- and glucocorticoid-inducible kinase 1 (SGK1), a growth factor-regulated kinase.

View Article and Find Full Text PDF

Ca(+)-dependent signaling regulates the function of dendritic cells (DCs), antigen-presenting cells linking innate and adaptive immunity. The activity of DCs is suppressed by glucocorticoids, potent immunosuppressive hormones. The present study explored whether the glucocorticoid dexamethasone influences the cytosolic Ca(2+) concentration ([Ca(2+)](i)) in DCs.

View Article and Find Full Text PDF