Publications by authors named "Kali Pruss"

Article Synopsis
  • Environmental enteric dysfunction (EED) is a condition impacting the small intestine, frequently seen in stunted children, characterized by damaged gut barrier and reduced nutrient absorption.
  • A study with gnotobiotic mice showed that specific bacterial strains from stunted children can cause inflammation and immune changes similar to those found in EED, impacting gut and brain function.
  • The research highlights a strain, Campylobacter concisus, as a potential contributor to gut issues, suggesting that targeting small intestinal microbiota could lead to new treatments for undernutrition across generations.
View Article and Find Full Text PDF

Microbiota-directed complementary food (MDCF) formulations have been designed to repair the gut communities of malnourished children. A randomized controlled trial demonstrated that one formulation, MDCF-2, improved weight gain in malnourished Bangladeshi children compared to a more calorically dense standard nutritional intervention. Metagenome-assembled genomes from study participants revealed a correlation between ponderal growth and expression of MDCF-2 glycan utilization pathways by Prevotella copri strains.

View Article and Find Full Text PDF

Preclinical and clinical studies are providing evidence that the healthy growth of infants and children reflects, in part, healthy development of their gut microbiomes. This process of microbial community assembly and functional maturation is perturbed in children with acute malnutrition. Gnotobiotic animals, colonized with microbial communities from children with severe and moderate acute malnutrition, have been used to develop microbiome-directed complementary food (MDCF) formulations for repairing the microbiomes of these children during the weaning period.

View Article and Find Full Text PDF

The human gut microbiota produces dozens of small molecules that circulate in blood, accumulate to comparable levels as pharmaceutical drugs, and influence host physiology. Despite the importance of these metabolites to human health and disease, the origin of most microbially-produced molecules and their fate in the host remains largely unknown. Here, we uncover a host-microbe co-metabolic pathway for generation of hippuric acid, one of the most abundant organic acids in mammalian urine.

View Article and Find Full Text PDF

The enteric pathogen Clostridioides difficile (Cd) is responsible for a toxin-mediated infection that causes more than 200,000 recorded hospitalizations and 13,000 deaths in the United States every year. However, Cd can colonize the gut in the absence of disease symptoms. Prevalence of asymptomatic colonization by toxigenic Cd in healthy populations is high; asymptomatic carriers are at increased risk of infection compared to noncolonized individuals and may be a reservoir for transmission of Cd infection.

View Article and Find Full Text PDF

Several enteric pathogens can gain specific metabolic advantages over other members of the microbiota by inducing host pathology and inflammation. The pathogen Clostridium difficile is responsible for a toxin-mediated colitis that causes 450,000 infections and 15,000 deaths in the United States each year; however, the molecular mechanisms by which C. difficile benefits from this pathology remain unclear.

View Article and Find Full Text PDF

Antibiotics alter microbiota composition and increase infection susceptibility. However, the generalizable effects of antibiotics on and the contribution of environmental variables to gut commensals remain unclear. To address this, we tracked microbiota dynamics with high temporal and taxonomic resolution during antibiotic treatment in a controlled murine system by isolating variables such as diet, treatment history, and housing co-inhabitants.

View Article and Find Full Text PDF

The intestinal microbiota provides colonization resistance against pathogens, limiting pathogen expansion and transmission. These microbiota-mediated mechanisms were previously identified by observing loss of colonization resistance after antibiotic treatment or dietary changes, which severely disrupt microbiota communities. We identify a microbiota-mediated mechanism of colonization resistance against Salmonella enterica serovar Typhimurium (S.

View Article and Find Full Text PDF

Vibrio cholerae O1, the etiological agent of cholera, is a natural inhabitant of aquatic ecosystems. Motility is a critical element for the colonization of both the human host and its environmental reservoirs. In this study, we investigated the molecular mechanisms underlying the chemotactic response of V.

View Article and Find Full Text PDF

The dense microbial ecosystem in the gut is intimately connected to numerous facets of human biology, and manipulation of the gut microbiota has broad implications for human health. In the absence of profound perturbation, the bacterial strains that reside within an individual are mostly stable over time . By contrast, the fate of exogenous commensal and probiotic strains applied to an established microbiota is variable, generally unpredictable and greatly influenced by the background microbiota.

View Article and Find Full Text PDF

It is widely accepted that Clostridium difficile exploits dysbiosis and leverages inflammation to thrive in the gut environment, where it can asymptomatically colonize humans or cause a toxin-mediated disease ranging in severity from frequent watery diarrhea to pseudomembranous colitis or toxic megacolon. Here, we synthesize recent findings from the gut microbiota and enteric pathogenesis fields to inform the next steps toward a better understanding of C. difficile infection (CDI).

View Article and Find Full Text PDF

To cause the diarrheal disease cholera, Vibrio cholerae must effectively colonize the small intestine. In order to do so, the bacterium needs to successfully travel through the stomach and withstand the presence of agents such as bile and antimicrobial peptides in the intestinal lumen and mucus. The bacterial cells penetrate the viscous mucus layer covering the epithelium and attach and proliferate on its surface.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7tbejgsc041vqbtrpg0t5fq9u0l2sh00): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once