Publications by authors named "Kali Chrysovergis"

Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) or GDF15 is a divergent member of the transforming growth factor beta (TGF-β) superfamily and mice expressing hNAG-1/hGDF15 have been shown to be resistant to HFD-induced obesity and inflammation. This study investigated if hNAG-1 increases lifespan in mice and its potential mechanisms. Here we report that female hNAG-1 mice had significantly increased both mean and median life spans in two transgenic lines, with a larger difference in life spans in mice on a HFD than on low fat diet.

View Article and Find Full Text PDF

Objective: The NLRP3 inflammasome plays an important regulatory role in obesity-induced insulin resistance. NSAID activated gene-1 (NAG-1) is a divergent member of the TGF-β superfamily. NAG-1 Tg mice are resistant to dietary- and genetic-induced obesity and have improved insulin sensitivity.

View Article and Find Full Text PDF

Background: Non-steroidal anti-inflammatory drug-activated gene (NAG-1), a divergent member of the transforming growth factor-beta superfamily, has been implicated in many cellular processes, including inflammation, early bone formation, apoptosis, and tumorigenesis. Recent clinical studies suggests that a C to G single nucleotide polymorphism at position 6 (histidine to aspartic acid substitution, or H6D) of the NAG-1 protein is associated with lower human prostate cancer incidence. The objective of the current study is to investigate the activity of NAG-1 H6D variant in prostate cancer tumorigenesis in vivo.

View Article and Find Full Text PDF

Non-steroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1) and COX-2 are involved in cellular processes such as inflammation, apoptosis, and tumorigenesis. To address the relationship between COX-2 and NAG-1 expression, we investigated the expression of NAG-1 and COX-2 in normal and tumor tissue from human patients, Apc(Min/+) mice, and COX-2(-/-) mice. While COX-2 expression is highly induced in tumor tissue, NAG-1 expression is reduced.

View Article and Find Full Text PDF

15-LOX-1 and its metabolites are involved in colorectal cancer. Recently, we reported that 15-LOX-1 overexpression in HCT-116 human colorectal cancer cells inhibited cell growth by induction of p53 phosphorylation (4). To determine whether the 15-LOX-1 protein or its metabolites are responsible for phosphorylation of p53 in HCT-116 cells, we used HCT-116 cells that expressed a mutant 15-LOX-1.

View Article and Find Full Text PDF

The osteocyte is the terminally differentiated state of the osteogenic mesenchymal progenitor immobilized in the bone matrix. Despite their numerical prominence, little is known about osteocytes and their formation. Osteocytes are physically separated in the bone matrix but seemingly compensate for their seclusion from other cells by maintaining an elaborate network of cell processes through which they interact with other osteocytes and bone-lining cells at the periosteal and endosteal surfaces of the bone.

View Article and Find Full Text PDF

Skeletal tissues develop either by intramembranous ossification, where bone is formed within a soft connective tissue, or by endochondral ossification. The latter proceeds via cartilage anlagen, which through hypertrophy, mineralization, and partial resorption ultimately provides scaffolding for bone formation. Here, we describe a novel and essential mechanism governing remodeling of unmineralized cartilage anlagen into membranous bone, as well as tendons and ligaments.

View Article and Find Full Text PDF

Matrix metalloproteinase-14 is required for degradation of fibrillar collagen by mesenchymal cells. Here we show that keratinocytes use an alternative plasminogen and matrix metalloproteinase-13-dependent pathway for dissolution of collagen fibrils. Primary keratinocytes displayed an absolute requirement for serum to dissolve collagen.

View Article and Find Full Text PDF