Publications by authors named "Kalen P Berry"

Neuronal hyperactivity induces memory deficits in Alzheimer's disease. However, how hyperactivity disrupts memory is unclear. Using in vivo synaptic imaging in the mouse visual cortex, we show that structural excitatory-inhibitory synapse imbalance in the apical dendrites favors hyperactivity in early amyloidosis.

View Article and Find Full Text PDF

Medulloblastoma (MB) is the most common malignant pediatric brain tumor, however, the mechanisms underlying tumorigenesis in different MB subgroups remain incompletely understood. Although previous studies of MB predisposition have been conducted in tertiary referral centers primarily in Caucasian cohorts, it is not unclear clear whether there exist population-specific genetic alterations in MBs. In this study, we investigated the contribution of genomic and transcriptomic alterations to the risk of malignant MB in the Chinese population (designated as the Asian cohort).

View Article and Find Full Text PDF

Simultaneous, high-resolution imaging across a large number of synaptic and dendritic sites is critical for understanding how neurons receive and integrate signals. Yet, functional imaging that targets a large number of submicrometer-sized synaptic and dendritic locations poses significant technical challenges. We demonstrate a new parallelized approach to address such questions, increasing the signal-to-noise ratio by an order of magnitude compared to previous approaches.

View Article and Find Full Text PDF

Progenitor heterogeneity and identities underlying tumor initiation and relapse in medulloblastomas remain elusive. Utilizing single-cell transcriptomic analysis, we demonstrated a developmental hierarchy of progenitor pools in Sonic Hedgehog (SHH) medulloblastomas, and identified OLIG2-expressing glial progenitors as transit-amplifying cells at the tumorigenic onset. Although OLIG2 progenitors become quiescent stem-like cells in full-blown tumors, they are highly enriched in therapy-resistant and recurrent medulloblastomas.

View Article and Find Full Text PDF

The repair and functional recovery of the nervous system is a highly regulated process that requires the coordination of many different components including the proper myelination of regenerated axons. Dysmyelination and remyelination failures after injury result in defective nerve conduction, impairing normal nervous system functions. There are many convergent regulatory networks and signaling mechanisms between development and regeneration.

View Article and Find Full Text PDF

Line-scanning temporal focusing microscopy (LineTFM) is capable of imaging biological samples more than 10 times faster than two-photon laser point-scanning microscopy (TPLSM), while achieving nearly the same lateral and axial spatial resolution. However, the image contrast taken by LineTFM is lower than that by TPLSM because LineTFM is severely influenced by biological tissue scattering. To reject the scattered photons, we implemented LineTFM using both structured illumination and uniform illumination combined with the HiLo post-processing algorithm, called HiLL microscopy (HiLo-Line-scanning temporal focusing microscopy).

View Article and Find Full Text PDF

Since Cajal's first drawings of Golgi stained neurons, generations of researchers have been fascinated by the small protrusions, termed spines, studding many neuronal dendrites. Most excitatory synapses in the mammalian CNS are located on dendritic spines, making spines convenient proxies for excitatory synaptic presence. When in vivo imaging revealed that dendritic spines are dynamic structures, their addition and elimination were interpreted as excitatory synapse gain and loss, respectively.

View Article and Find Full Text PDF

During development, the environment exerts a profound influence on the wiring of brain circuits. Due to the limited resolution of studies in fixed tissue, this experience-dependent structural plasticity was once thought to be restricted to a specific developmental time window. The recent introduction of two-photon microscopy for in vivo imaging has opened the door to repeated monitoring of individual neurons and the study of structural plasticity mechanisms at a very fine scale.

View Article and Find Full Text PDF

Older concepts of a hard-wired adult brain have been overturned in recent years by in vivo imaging studies revealing synaptic remodeling, now thought to mediate rearrangements in microcircuit connectivity. Using three-color labeling and spectrally resolved two-photon microscopy, we monitor in parallel the daily structural dynamics (assembly or removal) of excitatory and inhibitory postsynaptic sites on the same neurons in mouse visual cortex in vivo. We find that dynamic inhibitory synapses often disappear and reappear again in the same location.

View Article and Find Full Text PDF

The nerve-cell cytoskeleton is essential for the regulation of intrinsic neuronal activity. For example, neuronal migration defects are associated with microtubule regulators, such as LIS1 and dynein, as well as with actin regulators, including Rac GTPases and integrins, and have been thought to underlie epileptic seizures in patients with cortical malformations. However, it is plausible that post-developmental functions of specific cytoskeletal regulators contribute to the more transient nature of aberrant neuronal activity and could be masked by developmental anomalies.

View Article and Find Full Text PDF