Front Cell Infect Microbiol
March 2024
Trypanosomatid parasites are kinetoplastid protists that compartmentalize glycolytic enzymes in unique peroxisome-related organelles called glycosomes. The heterohexameric AAA-ATPase complex of PEX1-PEX6 is anchored to the peroxisomal membrane and functions in the export of matrix protein import receptor PEX5 from the peroxisomal membrane. Defects in PEX1, PEX6 or their membrane anchor causes dysfunction of peroxisomal matrix protein import cycle.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) constitute an important but challenging class of molecular targets for small molecules. The PEX5-PEX14 PPI has been shown to play a critical role in glycosome biogenesis and its disruption impairs the metabolism in Trpanosoma parasites, eventually leading to their death. Therefore, this PPI is a potential molecular target for new drugs against diseases caused by Trypanosoma infections.
View Article and Find Full Text PDFInsect-transmitted trypanosomatid parasite infections cause life-threatening neglected tropical diseases (NTDs), including African sleeping sickness, Chagas disease and leishmaniasis. In these parasites, glycosomes are unique organelles that are essential for the parasite survival. Proper biogenesis of glycosomes is crucial to ensure correct compartmentation of the glycosomal metabolism.
View Article and Find Full Text PDFTrypanosomiases are neglected tropical diseases caused by Trypanosoma (sub)species. Available treatments are limited and have considerable adverse effects and questionable efficacy in the chronic stage of the disease, urgently calling for the identification of new targets and drug candidates. Recently, we have shown that impairment of glycosomal protein import by the inhibition of the PEX5-PEX14 protein-protein interaction (PPI) is lethal to Trypanosoma.
View Article and Find Full Text PDFTrypanosomiases are life-threatening infections of humans and livestock, and novel effective therapeutic approaches are needed. Trypanosoma compartmentalize glycolysis into specialized organelles termed glycosomes. Most of the trypanosomal glycolytic enzymes harbor a peroxisomal targeting signal-1 (PTS1) which is recognized by the soluble receptor PEX5 to facilitate docking and translocation of the cargo into the glycosomal lumen.
View Article and Find Full Text PDFHuman pathogenic trypanosomatid parasites harbor a unique form of peroxisomes termed glycosomes that are essential for parasite viability. We and others previously identified and characterized the essential ortholog TbPEX3, which is the membrane-docking factor for the cytosolic receptor PEX19 bound to the glycosomal membrane proteins. Knockdown of TbPEX3 expression leads to mislocalization of glycosomal membrane and matrix proteins, and subsequent cell death.
View Article and Find Full Text PDFAfrican and American trypanosomiases are estimated to affect several million people across the world, with effective treatments distinctly lacking. New, ideally oral, treatments with higher efficacy against these diseases are desperately needed. Peroxisomal import matrix (PEX) proteins represent a very interesting target for structure- and ligand-based drug design.
View Article and Find Full Text PDFThe spectrum of health complications instigated by coronavirus disease 2019 (COVID-19, caused by the novel severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2) pandemic has been diverse and complex. Besides the evident pulmonary and cardiovascular threats, accumulating clinical data points to several neurological complications, which are more common in elderly COVID-19 patients. Recent pieces of evidence have marked events of neuro infection and neuroinvasion, producing several neurological complications in COVID-19 patients; however, a systematic understanding of neuro-pathophysiology and manifested neurological complications, more specifically in elderly COVID-19 patients is largely elusive.
View Article and Find Full Text PDFprotists are pathogens leading to a spectrum of devastating infectious diseases. The range of available chemotherapeutics against is limited, and the existing therapies are partially ineffective and cause serious adverse effects. Formation of the PEX14-PEX5 complex is essential for protein import into the parasites' glycosomes.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
December 2019
Trypanosomatid parasites cause devastating African sleeping sickness, Chagas disease, and Leishmaniasis that affect about 18 million people worldwide. Recently, we showed that the biogenesis of glycosomes could be the "Achilles' heel" of trypanosomatids suitable for the development of new therapies against trypanosomiases. This was shown for inhibitors of the import machinery of matrix proteins, while the distinct machinery for the topogenesis of glycosomal membrane proteins evaded investigation due to the lack of a druggable interface.
View Article and Find Full Text PDFGlycosomes evolved as specialized system for glycolysis in trypanosomatids. These organelle rely on protein import to maintain function. A machinery of peroxin (PEX) proteins is responsible for recognition and transport of glycosomal proteins to the organelle.
View Article and Find Full Text PDFPeroxisomes are dynamic organelles of eukaryotic cells performing a wide range of functions including fatty acid oxidation, peroxide detoxification and ether-lipid synthesis in mammals. Peroxisomes lack their own DNA and therefore have to import proteins post-translationally. Peroxisomes can import folded, co-factor bound and even oligomeric proteins.
View Article and Find Full Text PDFPeroxisomes are central to eukaryotic metabolism, including the oxidation of fatty acids-which subsequently provide an important source of metabolic energy-and in the biosynthesis of cholesterol and plasmalogens. However, the presence and nature of peroxisomes in the parasitic apicomplexan protozoa remains controversial. A survey of the available genomes revealed that genes encoding peroxisome biogenesis factors, so-called peroxins (Pex), are only present in a subset of these parasites, the coccidia.
View Article and Find Full Text PDFVector-borne trypanosomatid parasite infections in tropical and sub-tropical countries constitute a major threat to humans and livestock. parasites are transmitted by tsetse fly and lead to African sleeping sickness in humans and Nagana in cattle. In Latin American countries, infections spread by triatomine kissing bugs lead to Chagas disease.
View Article and Find Full Text PDFThe parasitic protists of the genus infect humans and domestic mammals, causing severe mortality and huge economic losses. The most threatening trypanosomiasis is Chagas disease, affecting up to 12 million people in the Americas. We report a way to selectively kill by blocking glycosomal/peroxisomal import that depends on the PEX14-PEX5 protein-protein interaction.
View Article and Find Full Text PDFBiochim Biophys Acta
October 2015
Protozoan parasites of the family Trypanosomatidae infect humans as well as livestock causing devastating diseases like sleeping sickness, Chagas disease, and Leishmaniasis. These parasites compartmentalize glycolytic enzymes within unique organelles, the glycosomes. Glycosomes represent a subclass of peroxisomes and they are essential for the parasite survival.
View Article and Find Full Text PDFPeroxisomal biogenesis disorders (PBDs) represent a spectrum of autosomal recessive metabolic disorders that are collectively characterized by abnormal peroxisome assembly and impaired peroxisomal function. The importance of this ubiquitous organelle for human health is highlighted by the fact that PBDs are multisystemic disorders that often cause death in early infancy. Peroxisomes contribute to central metabolic pathways.
View Article and Find Full Text PDF