Unicellular ciliates like Tetrahymena are best known as free-living bacteriovores, but many species are facultative or obligate parasites. These "histophages" feed on the tissues of hosts ranging from planarian flatworms to commercially important fish and the larvae of imperiled freshwater mussels. Here, we developed a novel bioinformatics pipeline incorporating the nonstandard ciliate genetic code and used it to search for Ciliophora sequences in 34 publicly available Platyhelminthes EST libraries.
View Article and Find Full Text PDFUnicellular ciliates like are best known as free-living bacteriovores, but many species are facultative or obligate parasites. These 'histophages' feed on the tissues of hosts ranging from planarian flatworms to commercially important fish and the larvae of imperiled freshwater mussels. Here, we developed a novel bioinformatics pipeline incorporating the nonstandard ciliate genetic code and used it to search for Ciliophora sequences in 34 publicly available Platyhelminthes EST libraries.
View Article and Find Full Text PDFThe ommochrome and porphyrin body pigments that give freshwater planarians their brown color are produced by specialized dendritic cells located just beneath the epidermis. During embryonic development and regeneration, differentiation of new pigment cells gradually darkens newly formed tissue. Conversely, prolonged light exposure ablates pigment cells through a porphyrin-based mechanism similar to the one that causes light sensitivity in rare human disorders called porphyrias.
View Article and Find Full Text PDFBackground: Timely referral for specialist evaluation in patients with advanced heart failure (HF) is a Class 1 recommendation. However, the transition from stage C HF to advanced or stage D HF often goes undetected in routine care, resulting in delayed referral and higher mortality rates.
Objectives: The authors sought to develop an augmented intelligence-enabled workflow using machine learning to identify patients with stage D HF and streamline referral.
Background: Planarian flatworms are popular invertebrate models for basic research on stem cell biology and regeneration. These animals are commonly maintained on a diet of homogenized calf liver or boiled egg yolk in the laboratory, introducing a source of uncontrolled experimental variability.
Results: Here, we report the development of defined diets, prepared entirely from standardized, commercially sourced ingredients, for the freshwater species Schmidtea mediterranea, Dugesia japonica, and Girardia dorotocephala.
Named for its assembly near exon-exon junctions during pre-mRNA splicing, the exon junction complex (EJC) regulates multiple aspects of RNA biochemistry, including export of spliced mRNAs from the nucleus and translation. Transcriptome analyses have revealed broad EJC occupancy of spliced metazoan transcripts, yet inhibition of core subunits has been linked to surprisingly specific phenotypes and a growing number of studies support gene-specific regulatory roles. Here we report results from a classroom-based RNAi screen revealing the EJC is necessary for regeneration in the planarian flatworm Schmidtea mediterranea.
View Article and Find Full Text PDF