Publications by authors named "Kaleigh J O Norquay"

White-nose syndrome (WNS)-positive little brown bats () may exhibit immune responses including increased cytokine and pro-inflammatory mediator gene levels. Bioactive lipid mediators (oxylipins) formed by enzymatic oxidation of polyunsaturated fatty acids can contribute to these immune responses, but have not been investigated in WNS pathophysiology. Nonenzymatic conversion of polyunsaturated fatty acids can also occur due to reactive oxygen species, however, these enantiomeric isomers will lack the same signaling properties.

View Article and Find Full Text PDF

White-nose syndrome (WNS) is an emergent wildlife fungal disease of cave-dwelling, hibernating bats that has led to unprecedented mortalities throughout North America. A primary factor in WNS-associated bat mortality includes increased arousals from torpor and premature fat depletion during winter months. Details of species and sex-specific changes in lipid metabolism during WNS are poorly understood and may play an important role in the pathophysiology of the disease.

View Article and Find Full Text PDF

Understanding how context (e.g., host species, environmental conditions) drives disease susceptibility is an essential goal of disease ecology.

View Article and Find Full Text PDF

Hibernation consists of extended durations of torpor interrupted by periodic arousals. The 'dehydration hypothesis' proposes that hibernating mammals arouse to replenish water lost through evaporation during torpor. Arousals are energetically expensive, and increased arousal frequency can alter survival throughout hibernation.

View Article and Find Full Text PDF

Spillover of viruses from bats to other animals may be associated with increased contact between them, as well as increased shedding of viruses by bats. Here, we tested the prediction that little brown bats (Myotis lucifugus) co-infected with the M. lucifugus coronavirus (Myl-CoV) and with Pseudogymnoascus destructans (Pd), the fungus that causes bat white-nose syndrome (WNS), exhibit different disease severity, viral shedding and molecular responses than bats infected with only Myl-CoV or only P.

View Article and Find Full Text PDF

Wildlife are exposed to neurotoxic mercury at locations distant from anthropogenic emission sources because of long-range atmospheric transport of this metal. In this study, mercury bioaccumulation in insectivorous bat species (Mammalia: Chiroptera) was investigated on a broad geographic scale in Canada. Fur was analyzed (n=1178) for total mercury from 43 locations spanning 20° latitude and 77° longitude.

View Article and Find Full Text PDF

Variation in prey resources influences the diet and behaviour of predators. When prey become limiting, predators may travel farther to find preferred food or adjust to existing local resources. When predators are habitat limited, local resource abundance impacts foraging success.

View Article and Find Full Text PDF