Publications by authors named "Kaleena M Bernardi"

Endoplasmic reticulum (ER) membrane-bound E3 ubiquitin ligases promote ER-associated degradation (ERAD) by ubiquitinating a retro-translocated substrate that reaches the cytosol from the ER, targeting it to the proteasome for destruction. Recent findings implicate ERAD-associated deubiquitinases (DUBs) as positive and negative regulators during ERAD, reflecting the different consequences of deubiquitinating a substrate prior to proteasomal degradation. These observations raise the question of whether a DUB can control the fate of a nonubiquitinated ERAD substrate.

View Article and Find Full Text PDF

Significance: Protein misfolding within the endoplasmic reticulum (ER) is managed by an ER quality control system that retro-translocates aberrant proteins into the cytosol for proteasomal destruction. This process, known as ER-associated degradation, utilizes the action of ER redox enzymes to accommodate the disulfide-bonded nature of misfolded proteins. Strikingly, various pathogenic viruses and toxins co-opt these redox components to reach the cytosol during entry.

View Article and Find Full Text PDF

Cholera toxin (CT) is transported from the plasma membrane of host cells to the endoplasmic reticulum (ER) where the catalytic CTA1 subunit retro-translocates to the cytosol to induce toxicity. Our previous analyses demonstrated that the ER oxidoreductase protein disulfide isomerase (PDI) acts as a redox-dependent chaperone to unfold CTA1, a reaction postulated to initiate toxin retro-translocation. In its reduced state, PDI binds and unfolds CTA1; subsequent oxidation of PDI by Ero1alpha enables toxin release.

View Article and Find Full Text PDF

To cause disease, cholera toxin (CT) is transported from the cell surface to the endoplasmic reticulum (ER) lumen where the catalytic CTA1 subunit retro-translocates to the cytosol to induce pathological water secretion. Two retro-translocon components are the Derlins and ER-associated multi-spanning E3 ubiquitin ligases including Hrd1 and gp78. We demonstrated previously that Derlin-1 facilitates CTA1 retro-translocation.

View Article and Find Full Text PDF

Cholera toxin (CT) intoxicates cells by using its receptor-binding B subunit (CTB) to traffic from the plasma membrane to the endoplasmic reticulum (ER). In this compartment, the catalytic A1 subunit (CTA1) is unfolded by protein disulfide isomerase (PDI) and retro-translocated to the cytosol where it triggers a signaling cascade, leading to secretory diarrhea. How CT is targeted to the site of retro-translocation in the ER membrane to initiate translocation is unclear.

View Article and Find Full Text PDF