Publications by authors named "Kalcheim Y"

Controlling the Mott transition through strain engineering is crucial for advancing the development of memristive and neuromorphic computing devices. Yet, Mott insulators are heterogeneous due to intrinsic phase boundaries and extrinsic defects, posing significant challenges to fully understanding the impact of microscopic distortions on the local Mott transition. Here, using a synchrotron-based scanning X-ray nanoprobe, we studied the real-space structural heterogeneity during the structural phase transition in a VO thin film.

View Article and Find Full Text PDF

Probabilistic computing is a paradigm in which data are not represented by stable bits, but rather by the probability of a metastable bit to be in a particular state. The development of this technology has been hindered by the availability of hardware capable of generating stochastic and tunable sequences of "1s" and "0s". The options are currently limited to complex CMOS circuitry and, recently, magnetic tunnel junctions.

View Article and Find Full Text PDF
Article Synopsis
  • Strong electron repulsion in solids can lead to a phenomenon called the "Mott" metal-to-insulator transition (MIT), where electrons transform from a mobile to a localized state.
  • Understanding this transition has been difficult for over 50 years due to challenges in observing both electronic states.
  • Researchers used angle-resolved photoemission spectroscopy (ARPES) to demonstrate that in vanadium oxide (VO), increasing temperature causes the itinerant conduction band to vanish while a quasi-localized state shifts to higher binding energies.
View Article and Find Full Text PDF

Application of an electric stimulus to a material with a metal-insulator transition can trigger a large resistance change. Resistive switching from an insulating into a metallic phase, which typically occurs by the formation of a conducting filament parallel to the current flow, is a highly active research topic. Using the magneto-optical Kerr imaging, we found that the opposite type of resistive switching, from a metal into an insulator, occurs in a reciprocal characteristic spatial pattern: the formation of an insulating barrier perpendicular to the driving current.

View Article and Find Full Text PDF

Many correlated systems feature an insulator-to-metal transition that can be triggered by an electric field. Although it is known that metallization takes place through filament formation, the details of how this process initiates and evolves remain elusive. We use in-operando optical reflectivity to capture the growth dynamics of the metallic phase with space and time resolution.

View Article and Find Full Text PDF

To circumvent the von Neumann bottleneck, substantial progress has been made towards in-memory computing with synaptic devices. However, compact nanodevices implementing non-linear activation functions are required for efficient full-hardware implementation of deep neural networks. Here, we present an energy-efficient and compact Mott activation neuron based on vanadium dioxide and its successful integration with a conductive bridge random access memory (CBRAM) crossbar array in hardware.

View Article and Find Full Text PDF

Vanadium oxides are strongly correlated materials which display metal-insulator transitions (MITs) as well as various structural and magnetic properties that depend heavily on oxygen stoichiometry. Therefore, it is crucial to precisely control oxygen stoichiometry in these materials, especially in thin films. This work demonstrates a high-vacuum gas evolution technique which allows for the modification of oxygen concentrations in VO thin films by carefully tuning the thermodynamic conditions.

View Article and Find Full Text PDF

Resistive switching can be achieved in a Mott insulator by applying current/voltage, which triggers an insulator-metal transition (IMT). This phenomenon is key for understanding IMT physics and developing novel memory elements and brain-inspired technology. Despite this, the roles of electric field and Joule heating in the switching process remain controversial.

View Article and Find Full Text PDF

Machine learning imitates the basic features of biological neural networks at a software level. A strong effort is currently being made to mimic neurons and synapses with hardware components, an approach known as neuromorphic computing. While recent advances in resistive switching have provided a path to emulate synapses at the 10 nm scale, a scalable neuron analogue is yet to be found.

View Article and Find Full Text PDF
Article Synopsis
  • Resistive switching allows devices to alter their resistance with an electric field, playing a key role in new tech like neuromorphic computing and resistive memories.
  • Threshold firing, a promising type of resistive switching found in Mott insulators, occurs when a material transitions from an insulating to a conducting state after reaching a certain voltage.
  • Research shows that Mott nanodevices can 'remember' previous resistive switching events even after returning to the insulating state, and can be re-triggered using lower voltages for an extended period, highlighting a new form of volatile memory with various potential applications.
View Article and Find Full Text PDF

Controlling the electronic properties of oxides that feature a metal-insulator transition (MIT) is a key requirement for developing a new class of electronics often referred to as "Mottronics." A simple, controllable method to switch the MIT properties in real time is needed for practical applications. Here we report a giant, nonvolatile resistive switching (ΔR/R > 1,000%) and strong modulation of the MIT temperature (ΔT > 30 K) in a voltage-actuated VO/PMN-PT [Pb(Mg,Nb)O-PbTiO] heterostructure.

View Article and Find Full Text PDF

The interdependences of different phase transitions in Mott materials are fundamental to the understanding of the mechanisms behind them. One of the most important relations is between the ubiquitous structural and electronic transitions. Using IR spectroscopy, optical reflectivity, and x-ray diffraction, we show that the metal-insulator transition is coupled to the structural phase transition in V_{2}O_{3} films.

View Article and Find Full Text PDF

Control over the vortex potential at the nanoscale in a superconductor is a subject of great interest for both fundamental and technological reasons. Many methods for achieving artificial pinning centers have been demonstrated, for example, with magnetic nanostructures or engineered imperfections, yielding many intriguing effects. However, these pinning mechanisms do not offer dynamic control over the strength of the patterned vortex potential because they involve static nanostructures created in or near the superconductor.

View Article and Find Full Text PDF

Electron pairing in the vast majority of superconductors follows the Bardeen-Cooper-Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in SLG.

View Article and Find Full Text PDF

The superconducting critical temperature, T(C), of thin Nb films is significantly modified when gold nanoparticles (NPs) are chemically linked to the Nb film, with a consistent enhancement when using 3 nm long disilane linker molecules. The T(C) increases by up to 10% for certain linker length and NP size. No change is observed when the nanoparticles are physisorbed with nonlinking molecules.

View Article and Find Full Text PDF

The temperature evolution of the proximity effect in Au/La(2-x)Sr(x)CuO(4) and La(1.55)Sr(0.45)CuO(4)/La(2-x)Sr(x)CuO(4) bilayers was investigated using scanning tunneling microscopy.

View Article and Find Full Text PDF