Publications by authors named "Kalashikam R Rao"

Introduction: Childhood stunting has a complex aetiology, with poor gut health being an important contributor. This study will assess inter-relationships between maternal and infant gut health indices and infant linear growth. Inter-relationships between gut health indices, systemic inflammation and growth hormones in early childhood will also be assessed.

View Article and Find Full Text PDF

Introduction: Evidence on the impact of nutrient-rich animal source foods such as eggs for improving child growth and cognition is inconsistent. This study aims to examine the impact of an egg intervention in children, along with behaviour change communication (BCC) to the mother, on linear growth and cognition, and nutritional status in children aged 9-18 months.

Methods And Analysis: A 9-month open-labelled randomised controlled trial will be conducted in three urban slums in Hyderabad, India, as a substudy of an observational cohort study (n=350) following pregnant women and their children until 18 months of age in a population at risk of stunting.

View Article and Find Full Text PDF

Introduction: In 2020, an estimated 150 million children under the age of 5 years were stunted. Stunting results from early-life adversity and it is associated with significant physical and cognitive deficit, lifelong socioeconomic disadvantage and reduced life expectancy. There is a need to understand the causes of stunting and its effects in order to develop strategies to avoid it and to mitigate the consequences once stunting has occurred.

View Article and Find Full Text PDF

FGF21 is an endocrine hormone that controls key metabolic processes and induces the synthesis of glucose transporters, resulting in increased glucose absorption levels in fat cells. It is expressed in multiple metabolically active organs and tissues. is also a powerful regulator of glucose homeostasis as a direct downregulating gene of peroxisome proliferator-activated receptor (), which plays a role in regulating the activity of glucose and lipids.

View Article and Find Full Text PDF

Calorie restriction (CR) if planned properly with regular exercise at different ages can result in healthy weight loss. CR can also have different beneficial effects on improving lifespan and decreasing the age-associated diseases by regulating physiological, biochemical, and molecular markers. The different pathways regulated by CR include:(1) AMP-activated protein kinase (AMPK), which involves PGC-1α, SIRT1, and SIRT3.

View Article and Find Full Text PDF

Objectives: Diet is the major modifiable risk factor for the onset of insulin resistance and its progression into diabetes. In the present study the effect of various dietary fats on inflammatory homeostasis and glucose tolerance is investigated in high fat and high fructose fed mice model.

Methods: C57/BL6J mice were divided into four groups and fed a casein-based diet containing high fructose (45%) and high fat (24%) (clarified butter oil [CBO]; safflower oil [SFFO] and lard oil [LO]) for 120 days; oral glucose tolerance (OGTT), plasma lipid profile and plasma & adipose tissue cytokines levels were compared with the control diet (10% groundnut oil and 59.

View Article and Find Full Text PDF

Fibroblast growth factor 21 (FGF21) has emerged as a pleiotropic hormone and is known for its beneficiary roles in the management of diabetes and hyperglycaemia. However, the role of FGF21 during the transition from prediabetes to diabetes still remains unclear. Hence, the present study is aimed to understand the regulation of glucose homeostasis by FGF21 during the transition from prediabetes to diabetes in WNIN/GR-Ob rats.

View Article and Find Full Text PDF

Obesity is a multifactorial disorder, caused mainly due to lifestyle changes, and increased consumption of calorie dense diets is not just limited to developed countries anymore. Chronic physiological stress and oxidative stress are known to be implicated in the etiology of obesity. However, the role of stress response towards obesity manifestation in genetically different rat strains is poorly understood.

View Article and Find Full Text PDF

Obesity, a multifactorial disorder, results from a chronic imbalance of energy intake vs. expenditure. Apart from excessive consumption of high calorie diet, genetic predisposition also seems to be equally important for the development of obesity.

View Article and Find Full Text PDF

Magnesium plays a major role in many vital functions in the body. We reported earlier that maternal magnesium restriction altered body composition, fat metabolism, and insulin resistance in WNIN rat offspring and was associated with increased glucocorticoid stress in the offspring in their later life. We hypothesize that increased glucocorticoid stress and inflammation which originate in Mg restricted rat dams is transmitted through placenta to the fetus and underlie the metabolic disturbances in the later life of the offspring.

View Article and Find Full Text PDF

WNIN (Wistar/NIN) is an inbred rat strain maintained at National Institute of Nutrition (NIN) for more than 90 years, and WNIN/Ob is an obese mutant originated from it. To determine their genetic relatedness with major rat strains in biomedical research, they were genotyped at various marker loci. The recently identified markers for albino and hooded mutations which clustered all the known albino rats into a single lineage also included WNIN and WNIN/Ob rats.

View Article and Find Full Text PDF

Aim: To investigate genetic susceptibility in Indian subjects with non-alcoholic fatty liver disease (NAFLD) by performing a pooled genetic study.

Methods: Study subjects (n = 306) were recruited and categorized into NAFLD and control groups based on ultrasound findings of fatty infiltration. Of the 306 individuals, 156 individuals had fatty infiltration and thus comprised the NAFLD group.

View Article and Find Full Text PDF

Background: Obesity has become an epidemic in worldwide population. Leptin gene defect could be one of the causes for obesity. Two mutant obese rats WNIN/Ob and WNIN/GROb, isolated at National Centre for Laboratory Animal Sciences (NCLAS), Hyderabad, India, were found to be leptin resistant.

View Article and Find Full Text PDF

WNIN/Obese (WNIN/Ob) rat a new mutant model of metabolic syndrome was identified in 1996 from an inbred Wistar rat strain, WNIN. So far several papers are published on this model highlighting its physical, biochemical and metabolic traits. WNIN/Ob is leptin resistant with unaltered leptin or its receptor coding sequences--the two well-known candidate genes for obesity.

View Article and Find Full Text PDF

Maternal vitamin deficiencies are associated with low birth weight and increased perinatal morbidity and mortality. We hypothesize that maternal folate and/or vitamin B(12) restrictions alter body composition and fat metabolism in the offspring. Female weaning Wistar rats received ad libitum for 12 weeks a control diet (American Institute of Nutrition-76A) or the same with restriction of folate, vitamin B(12) or both (dual deficient) and, after confirming vitamin deficiency, were mated with control males.

View Article and Find Full Text PDF

Robust evidence suggests that nutritional insult during fetal development could program the offspring to glucose intolerance, impaired insulin response and insulin resistance (IR). Considering the importance of chromium (Cr) in maintaining carbohydrate metabolism, this study determined the effect of maternal Cr restriction (CrR) on glucose metabolism and plasma insulin in Wistar/NIN (WNIN) rat offspring and the associated biochemical and/or molecular mechanisms. Female, weanling WNIN rats received ad libitum for 12 weeks, a control diet or the same with 65% restriction of Cr and mated with control males.

View Article and Find Full Text PDF

Intrauterine growth retardation programs the fetus to manipulated metabolic changes that lead to adult diseases. Considering that chromium (Cr) supplements influence lean body mass (LBM) in both humans and experimental animals, we have studied the effect of maternal Cr restriction on muscle development and function in the rat offspring. Female weanling Wistar/NIN rats received, for 12 weeks, a control or 65% Cr-restricted diet ad libitum and mated with control males.

View Article and Find Full Text PDF

Objective: We investigated the long-term effects of maternal/postnatal magnesium (Mg) restriction on adiposity, glucose tolerance, and insulin secretion in the offspring and the probable biochemical mechanisms associated with them.

Methods And Procedures: Female weanling Wistar/NIN (WNIN) rats received a control diet or 70% Mg-restricted (MgR) diet for 9 weeks and mated with control males. A third of the restricted dams were shifted to control diet from parturition.

View Article and Find Full Text PDF

Background: Intrauterine growth retardation due to maternal under-nutrition increases susceptibility to obesity and insulin resistance. We reported earlier in the offspring of mineral or vitamin restricted rat dams, a high body fat percentage and decreased insulin secretion to glucose challenge. This study determined whether or not central adiposity and altered adipocytokine profile were associated with high body fat content.

View Article and Find Full Text PDF

Bacterial isolates from respiratory and urinary tract infections in an Indian hospital setting were genotyped using FAFLP analysis. The 77 different isolates analyzed belonged to five genera namely Escherichia, Staphylococcus, Pseudomonas, Enterobacter and Pantoea. Before carrying out FAFLP analysis all the isolates were subjected to16S-23S ribosomal RNA-based species identification.

View Article and Find Full Text PDF