Publications by authors named "Kalaiselvi Periandavan"

Background: Oxidized LDL (OxLDL), the key player in atherogenesis modulates endothelial dysfunction, initiates monocyte recruitment, accentuates foam cell formation, and flares up inflammatory and apoptotic events. Even though homeopathic preparation of Allium sativum has been proved to be an anti-inflammatory, anti-apoptotic and anti-atherogenic agent, its mechanism of action on abrogating OxLDL mediated foam cell formation is yet to be explored.

Objective: This study was designed to bring out the role of homeopathic preparation of Allium sativum in curbing OxLDL mediated cellular inflammation in IC-21 cells exposed with OxLDL.

View Article and Find Full Text PDF

The reported incidence of liposarcomas in ~2,000 cases annually results in about 30% of myxoid liposarcomas. Cardiac myoxid liposarcomas are very rare; their presentation could be cardiac tamponade, due to direct compression of the tumor and/or pericardial effusion. In this report, we describe a patient who presented with pericardial effusion secondary to myoxid liposarcomas from the right atrium, an extremely rare presentation of liposarcomas in the heart.

View Article and Find Full Text PDF

Type 1 diabetes is a chronic immune-mediated disease caused by pancreatic β-cell dysfunction with consequent severe insulin deficiency. Exacerbated blood glucose levels can cause oxidative stress in the pancreatic β-cells, which leads to inflammation, and apoptosis resulting in islet dysfunction. Although massive studies have been carried out to elucidate the causative factors for β-cell damage in diabetes, the therapeutic approach to pancreatic β-cell damage has not been extensively studied.

View Article and Find Full Text PDF

Background: Endogenous pancreatic β-cell regeneration is a promising therapeutic approach for enhancing β-cell function and neogenesis in diabetes. Various findings have reported that regeneration might occur via stimulating β-cell proliferation, neogenesis, or conversion from other pancreatic cells to β-like cells. Although the current scenario illustrates numerous therapeutic strategies and approaches that concern endogenous β-cell regeneration, all of them have not been successful to a greater extent because of cost effectiveness, availability of suitable donors and rejection in case of transplantation, or lack of scientific evidence for many phytochemicals derived from plants that have been employed in traditional medicine.

View Article and Find Full Text PDF

Iron is an essential trace element required for several vital physiological and developmental processes, including erythropoiesis, bone, and neuronal development. Iron metabolism and oxygen homeostasis are interlinked to perform a vital role in the functionality of the heart. The metabolic machinery of the heart utilizes almost 90 % of oxygen through the electron transport chain.

View Article and Find Full Text PDF

Electrospinning, a recent fast-emerging technique highly applicable in the production of nanofibers has gained vast recognition owing to its explicit applications in various domains. Amongst which, the production of nanoscaffolds for wound healing applications has been focused recently due to advantages over conventional wound healing methods. In the present research, a composite nanoscaffold comprising SBA-15 (Santa Barbara Amorphous), amine functionalized SBA-15 polycaprolactone (PCL) and curcumin was investigated for its potentiality in wound healing therapeutics.

View Article and Find Full Text PDF

A 30-year-old woman with history of passage of stones since childhood presented with oliguria and pedal edema for 10 days. She had hypertension with a creatinine of 4.1 mg/dL.

View Article and Find Full Text PDF

Cardiac hypertrophy is the underlying cause of heart failure and is characterized by excessive oxidative stress leading to collagen deposition. Therefore, understanding the signalling mechanisms involved in excessive extracellular matrix deposition is necessary to prevent cardiac remodelling and heart failure. In this study, we hypothesized that hesperetin, a flavanone that elicits the activation of Nrf2 signalling and thereby suppresses oxidative stress, mediated pathological cardiac hypertrophy progression.

View Article and Find Full Text PDF

Diabetic nephropathy (DN), a progressive kidney disease afflicts more than 20 and up to 40% of the diabetic population and it is characterized by persistent microalbuminuria declined glomerular filtration rate. The interesting feature associated with DN is that, even though the progression of the disease correlates with oxidative stress, Nrf2, the master regulator of antioxidant defense system involved in counteracting oxidative stress is also upregulated in the diabetic kidneys of both human as well as experimental animals in early stages of DN. Despite the increased expression, the ability of this protein to get translocated into the nucleus is diminished signifying the functional impairment of Nrf2, implying redox imbalance.

View Article and Find Full Text PDF

The aim is to test the hypothesis whether the cholesterol loaded lysosomes are capable of mediating lysosomal membrane permeabilization (LMP) during aging and to study the efficacy of epigallocatechin-3-gallate (EGCG) in preserving the lysosomal membrane stability. Aged rats were fed with high cholesterol diet (HCD) and treated with EGCG orally. Serum and tissue lipid status, cholesterol levels in lysosomal fraction, activities of lysosomal enzymes in lysosomal, and cytosolic fractions were measured.

View Article and Find Full Text PDF

Background: Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the major receptor for oxidized low-density lipoprotein (Ox-LDL) in the aorta of aged rats. Ox-LDL initiates LOX-1 activation in the endothelium of lipid-accumulating sites of both animal and human subjects of hypercholesterolemia. Targeting LOX-1 may provide a novel diagnostic strategy towards hypercholesterolemia and vascular diseases.

View Article and Find Full Text PDF

Given the role of oxidative stress in PD pathogenesis and off-target side effects of currently available drugs, several natural phytochemicals seem to be promising in the management of PD. Here, we tested the hypothesis that scopoletin, an active principle obtained from (MC), efficiently quenches oxidative stress through DJ-1/Nrf2 signaling and ameliorates rotenone-induced PD. Despite reducing oxidative stress, the administration of MC extract (MCE) has lessened protein aggregation as evident from decreased levels of nitrotyrosine and -synuclein.

View Article and Find Full Text PDF

Apoptosis is an active response of cells to altered microenvironments, which is characterized by cell shrinkage, chromatin condensation, and DNA fragmentation, in a variety of cell types such as renal epithelial cells, endothelial cells, mesangial cells, and podocytes. Hyperglycemia is among the microenvironmental factors that may facilitate apoptosis, which plays a decisive role in the initiation of diabetic nephropathy. Transforming growth factor-β emerges as a powerful fibrogenic factor in the development of renal hypertrophy.

View Article and Find Full Text PDF

Objectives: Parkinson disease (PD) is a neurodegenerative disorder affecting mainly the motor system, as a result of death of dopaminergic neurons in the substantia nigra pars compacta. The present scenario of research in PD is directed to identify novel molecules that can be administered individually or co-administered with L-Dopa to prevent the L-Dopa-Induced Dyskinesia (LID) like states that arise during chronic L-Dopa administration. Hence, in this study, we investigated whether Morinda citrifolia has therapeutic effects in rotenone-induced Parkinson's disease (PD) with special reference to mitochondrial dysfunction mediated intrinsic apoptosis.

View Article and Find Full Text PDF

Parkinson's disease is a progressive neurodegenerative movement disorder with the cardinal symptoms of bradykinesia, resting tremor, rigidity, and postural instability, which lead to abnormal movements and lack of activity, which in turn cause muscular damage. Even though studies have been carried out to elucidate the causative factors that lead to muscular damage in Parkinson's disease, apoptotic events that occur in the skeletal muscle and a therapeutical approach to culminate the muscular damage have not been extensively studied. Thus, this study evaluates the impact of rotenone-induced SNPc lesions on skeletal muscle apoptosis and the efficacy of an ethyl acetate extract of Morinda citrifolia in safeguarding the myocytes.

View Article and Find Full Text PDF

Scope: Increased fat consumption in industrialized countries has resulted in hepatic steatosis that upregulates atherogenic aspirant genes, leading to atherosclerosis and mortality. Although extensive studies have been carried out to elucidate the atheroprotective efficacy of epigallocatechin-3-gallate (EGCG), the effect of EGCG on hepatic steatosis has not been studied comprehensively. Hence, the current study was designed to find out the effect of EGCG on hepatic events that prelude atherosclerosis with special reference to macrophage infiltration.

View Article and Find Full Text PDF
Article Synopsis
  • - Oxidative stress plays a key role in kidney diseases by causing cellular damage through increased reactive oxygen species (ROS); this study examines the impact of homeopathic treatment on oxidative stress in kidney stone disease using rats as a model.
  • - The research involves administering a homeopathic preparation from Berberis vulgaris and evaluating its effect on the renal antioxidant defense system and free radical activity markers in rat kidneys.
  • - Results show that the homeopathic preparation significantly boosts the activity of enzymatic and nonenzymatic antioxidants, reduces markers of oxidative damage, and provides protective effects to the kidneys against oxidative stress.
View Article and Find Full Text PDF

Advanced age significantly increases cholesterol levels, however, when combined with a high cholesterol diet it not only leads to life-threatening conditions like atherosclerosis, but also plays a central role in the pathogenesis of hepatic damage and its complications. Even though extensive studies have been carried out to elucidate the causative factors that lead to hepatic steatosis associated with liver damage in young rats due to hypercholesterolemia, events that occur in aged rats where a different milieu is presented by up and down regulation of various genes co-existing, has not been extensively studied. Hence, this study comparatively evaluates the impact of hypercholesterolemic stress induced liver damage in young and aged rats and the efficacy of epigallocatechin-3-gallate to protect the liver in both young and aged rats with special reference to apoptosis.

View Article and Find Full Text PDF

Purpose: The study focuses on the anti-urolithiasis potential of ultra-diluted homeopathic potency of Berberis vulgaris (B. vulgaris) root bark, commonly used in homeopathic system to treat renal calculi.

Methodology: B.

View Article and Find Full Text PDF

Oxidative stress is a major player in aging and neurodegenerative disorders. Macromolecular damage occurs as a result of oxidative stress that affects the mitochondria. Mitochondrial damage leads to cell death by apoptosis or necrosis.

View Article and Find Full Text PDF

Objectives: Oxidative stress is recognized as a key element responsible for the development of age-related pathologies. A declining endogenous defence system during senescence dictates the need for supplementation with exogenous antioxidants through diet. Hesperidin is a naturally occurring flavonone present in citrus fruits and has been shown to have many biological properties, including antioxidant activity.

View Article and Find Full Text PDF
Article Synopsis
  • Neurotransmission is crucial for brain communication, and changes in cholinergic systems during aging affect learning and memory.
  • The study found that the compound EGCG can help restore normal enzyme activity levels (like acetylcholine esterase) and improve behavioral changes in aging rats.
  • EGCG's positive impact on cognitive functions appears to stem from its ability to enhance cholinergic neurotransmission, as demonstrated through in vitro assays and bioinformatics docking studies.
View Article and Find Full Text PDF

Epidemiological studies suggest that even in the absence of other risk factors advanced age itself significantly increases cardiovascular morbidity. Age aggravated inflammatory activity further plays a central role in the pathogenesis of atherosclerosis and its complications. EGCG, a major flavonoid present in green tea extract has been proved to be useful in lowering cholesterol levels thereby slowing down the progression of cardiovascular diseases in young animals.

View Article and Find Full Text PDF

Aging is a multi-factorial process which involves deprivation in body's metabolism. Brain mitochondria are prone to oxidative damage owing to their high metabolic rate. The decline in antioxidant system during aging augments the neuronal damage to mitochondrial components like antioxidant system, Kreb's cycle enzymes and electron transport chain complexes.

View Article and Find Full Text PDF

Objective: The activities and capacities of antioxidant systems of tissue cells are declined during aging, leading to the gradual loss of pro-oxidant/antioxidant balance and accumulation of oxidative damage. Hence, the present study evaluated the role of green tea extract (GTE), rich in polyphenols, in combating age-associated macromolecular damage in rat cardiac tissue.

Methods: The antioxidant defense system, lipid peroxidation, protein oxidation, and redox status in heart tissue were studied using young and aged rats.

View Article and Find Full Text PDF