Fused filament fabrication (FFF), a portable, clean, low cost and flexible 3D printing technique, finds enormous applications in different sectors. The process has the ability to create ready to use tailor-made products within a few hours, and acrylonitrile butadiene styrene (ABS) is extensively employed in FFF due to high impact resistance and toughness. However, this technology has certain inherent process limitations, such as poor mechanical strength and surface finish, which can be improved by optimizing the process parameters.
View Article and Find Full Text PDFExpression of programmed cell death ligand 1 (PD-L1) within tumors is an important biomarker for guiding immune checkpoint therapies; however, immunohistochemistry-based methods of detection fail to provide a comprehensive picture of PD-L1 levels in an entire patient. To facilitate quantification of PD-L1 in the whole body, we developed a peptide-based, high-affinity PD-L1 imaging agent labeled with [F]fluoride for positron emission tomography (PET) imaging. The parent peptide, WL12, and the nonradioactive analog of the radiotracer, FPy-WL12, inhibit PD-1/PD-L1 interaction at low nanomolar concentrations (half maximal inhibitory concentration [IC], 26-32 nM).
View Article and Find Full Text PDFThe authors decribe an ultra-sensitive, room temperature, flexible transparent LPG sensor based on the use of a CdO/graphene nanocomposite. The graphene prevents the accumulation of CdO, enhances the surface area, and acts as a gas sensing material. FESEM images show a uniform decoration of CdO nanoparticles on graphene.
View Article and Find Full Text PDFTumors create and maintain an immunosuppressive microenvironment that promotes cancer cell escape from immune surveillance. The immune checkpoint protein programmed death-ligand 1 (PD-L1) is expressed in many cancers and is an important contributor to the maintenance of the immunosuppressive tumor microenvironment. PD-L1 is a prominent target for cancer immunotherapy.
View Article and Find Full Text PDFA nanocomposite consisting of a few layers of graphene (FLG) and tin dioxide (SnO) was prepared by ultrasound-assisted synthesis. The uniform SnO nanoparticles (NPs) on the FLG were characterized by X-ray diffraction in terms of lattice and phase structure. The functional groups present in the composite were analyzed by FTIR.
View Article and Find Full Text PDFLow concentration gas detection, rapid response time and low working temperature are anticipated for a varied range of toxic gas detection applications. Conversely, the existing gas sensors suffer mostly from a high working temperature along with a slow response at low concentrations of analytes. Here, we report an ultrasensitive flexible nanostructured ZnFeO ( = 0.
View Article and Find Full Text PDF