Publications by authors named "Kaladhar B Reddy"

Previous studies from our group and others have shown that current drug treatment(s) strategies eliminate bulk of tumor cells (non-CSCs) but it had a minimal effect on cancer stem cells (CSCs) leading to resistance and tumor recurrence. We studied the effects of CFM-4.16 (CARP-1 functional mimetic) and/or cisplatin on four Triple-negative breast cancer (TNBC) MDA-MB-468, MDA-MB-231, CRL-2335 and BR-1126, two cisplatin resistant CisR/MDA-231 and CisR/MDA-468 and cancer stem cells (CSCs) from resistant cell lines.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are a class of pluripotent cells that have been observed in most types of cancers. Evolving evidence suggests that CSCs, has the ability to self-renew and initiate tumors, may be responsible for promoting therapeutic resistance, tumor recurrence and metastasis. Tumor heterogeneity is originating from CSCs and its progenitors are recognized as major difficulty in efficaciously treating cancer patients.

View Article and Find Full Text PDF

Women with triple negative breast cancer (TNBC) have poor prognosis compared to other breast cancer subtypes. There were several reports indicating racial disparity in breast cancer outcomes between African American (AA) and European American (EA) women. For example, the mortality rates of AA breast cancer patients were three times higher than of EA patients, even though, the incidence is lower in AA women.

View Article and Find Full Text PDF

The triple negative breast cancer (TNBCs) and non-small cell lung cancers (NSCLCs) often acquire mutations that contribute to failure of drugs in clinic and poor prognosis, thus presenting an urgent need to develop new and improved therapeutic modalities. Here we report that CARP-1 functional mimetic (CFMs) compounds 4 and 5, and 4.6, a structurally related analog of CFM-4, are potent inhibitors of TNBC and NSCLC cells in vitro.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates tamoxifen resistance in ER-positive breast cancer, focusing on the role of microRNA-10b (miR-10b) and its increased expression in tamoxifen-resistant cells (MCF7TR).
  • - Experimental methods included over-expressing miR-10b in MCF-7 cells and reducing its levels in MCF7TR cells, revealing that higher miR-10b levels contributed to tamoxifen resistance by targeting HDAC4.
  • - The findings suggest that the miR-10b and HDAC4 interaction could be a new target for developing treatments for patients with tamoxifen-resistant breast cancer.
View Article and Find Full Text PDF

In recent years, there has been a tremendous and growing interest among researchers to investigate the role of mircoRNA (miRNA) in normal cellular as well as in disease processes. miRNAs are a family of small non-coding RNAs which were reported to regulate the expression of various oncogenes or tumor suppressor genes. The expression profiling of miRNAs has already entered into cancer clinics as diagnostic and prognostic biomarkers to assess tumor initiation, progression and response to treatment in cancer patients.

View Article and Find Full Text PDF

Breast cancer patients who are positive for estrogen receptor (ER) are usually treated with anti-estrogen drugs, such as tamoxifen (Tam). However, a great majority of such patients eventually develop resistance to Tam. In this study, MCF-7 cells (with de novo and/or acquired resistance to Tam) as well as T47D cells (acquired resistance to Tam) models were used to investigate the effect of treatment with cisplatin plus tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) studies have shown that neoadjuvant chemotherapy before surgery was effective in the minority of women, whereas the majority who had residual tumor had a relatively poor outcome. To identify the mechanism by which residual cancer cells survive chemotherapy, we initially conducted gene expression profiling using the CRL2335 TNBC cell line derived from a squamous breast carcinoma before and after treatment with cisplatin plus TRAIL. We found a significant increase in the expression of FZD8, one of Wnt receptors, and its downstream targets LEF1 and TCF in residual CRL2335 tumor cells after treatment with cisplatin plus TRAIL.

View Article and Find Full Text PDF

Triple negative breast cancer (TNBC) has increased recurrence and poor survival, despite a high response rate to neoadjuvant chemotherapy. The aim of this study was to determine whether current drug treatment(s) eliminates bulk of tumor cells, but it has a minimal effect on cancer stem cells (CSCs) leading to tumor recurrence. We studied the effects of PARP inhibitors (AZD2281 and BSI-201), paclitaxel, docetaxel, cisplatin and cisplatin plus TRAIL on CSCs derived from CRL-2335 and MDA-MB-468 TNBC cells in vitro.

View Article and Find Full Text PDF

Women with triple-negative breast cancer (TNBC) have a worse prognosis compared with other breast cancer subtypes. Hormonal or Herceptin-based therapies were found to be ineffective because of the loss of target receptors, such as ER, PR, and HER-2 amplification. Conventional chemo- and/ or radiation therapy also seems to have limited efficacy in TNBC patients.

View Article and Find Full Text PDF

This report describes that protein kinase C delta (PKCδ) overexpression prevents TRAIL-induced apoptosis in breast tumor cells; however, the regulatory mechanism(s) involved in this phenomenon is(are) incompletely understood. In this study, we have shown that TRAIL-induced apoptosis was significantly inhibited in PKCδ overexpressing MCF-7 (MCF7/PKCδ) cells. Our data reveal that PKCδ inhibits caspase-8 activation, a first step in TRAIL-induced apoptosis, thus preventing TRAIL-induced apoptosis.

View Article and Find Full Text PDF

Elevated expression of mitogen-activated protein kinase (Erk/MAPK) has been noted in a significant percentage of primary human breast cancers. To directly assess the importance of Erk/MAPK activation in estrogen (E2)-induced tumor progression, we blocked E2-signaling with MEK-inhibitor CI-1040 and/or tamoxifen (Tam). Our data show that both MEK-inhibitor CI-1040 and Tam blocked E2-induced MAPK phosphorylation and cell proliferation in MCF-7 breast cancer cells in vitro.

View Article and Find Full Text PDF

The antiestrogen tamoxifen has been widely used for decades as selective estrogen receptor (ER) modulator for ERalpha-positive breast tumors. Tamoxifen significantly reduces tumor recurrence by binding to the activation function-2 (AF-2) domain of the ER. Acquired resistance to tamoxifen in breast cancer patients is a serious therapeutic problem.

View Article and Find Full Text PDF

Acquired resistance to tamoxifen (Tam) in breast cancer patients is a serious therapeutic problem. We have previously reported that protein kinase C-delta (PKC-delta) plays a major role in estrogen (E2)-mediated cell proliferation. To determine if PKC-delta is one of the major alternate signaling pathways that supports cell growth in the presence of Tam, we determined the levels of PKC isoforms in four different models of antiestrogen-resistant cells.

View Article and Find Full Text PDF

The threonine and serine protein kinase AKT plays a major role in inhibiting apoptosis in a number of malignant cell types including prostate and breast carcinoma. Activation of AKT is a complex process involving translocation to the plasma membrane and phosphorylation of serine and threonine amino-acid residues. We now report that the novel compound 4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC), induces apoptosis in breast and prostate carcinoma cells and inhibits AKT activity in these cells.

View Article and Find Full Text PDF

Elevated levels of epidermal growth factor receptor (EGFR) are predictive of increased invasion and metastasis in many human cancers. In the present study, we have shown that two distinct pathways regulate cell migration in EGFR-overexpressing invasive cells such as MDA 468 breast cancer cells: mitogen-activated protein kinase (MAPK or ERK 1 and 2) pathways play a major role in early stages to cell migration; and protein kinase C delta isoforms (PKC-delta) play a significant role in later stages of sustained cell migration. Inhibition of MAPK activity with MAP kinase kinase (MEK) inhibitor PD98059 blocks early stages of cell migration (up to 4 h); however, cells revert back to enhanced cell migration after 4 h.

View Article and Find Full Text PDF

Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway is a frequent event in tumorigenesis. MAPKs have been implicated in cell migration, proteinase-induction, regulation of apoptosis, and angiogenesis, events that are essential for successful completion of metastasis. In this review, we discuss the potential role that MAPKs play in metastasis by regulating cell migration, proteinase-induction and apoptosis.

View Article and Find Full Text PDF

The estrogen receptor alpha (ERalpha) signaling plays an essential role in breast cancer progression and endocrine therapy. Mitogen-activated protein kinase (MAPK/Erk1/2) has been implicated in ligand-independent activation of ER, resulting in the cross-talk between growth factor and ER mediated signaling. In this study, we examined the effect of the cross-talk on estradiol (E(2))-mediated signaling, tumor growth and its effect on anti-estrogen therapy.

View Article and Find Full Text PDF

Activation of mitogen-activated protein kinase (Erk/MAPK) is a critical signal transduction event for estrogen (E(2))-mediated cell proliferation. Recent studies from our group and others have shown that persistent activation of Erk plays a major role in cell migration and tumor progression. The signaling mechanism(s) responsible for persistent Erk activation are not fully characterized, however.

View Article and Find Full Text PDF