Publications by authors named "Kakkis E"

Adeno-associated virus (AAV) vector gene therapy is a promising approach to treat rare genetic diseases; however, an ongoing challenge is how to best modulate host immunity to improve transduction efficiency and therapeutic outcomes. This report presents two studies characterizing multiple prophylactic immunosuppression regimens in male cynomolgus macaques receiving an AAVrh10 gene therapy vector expressing human coagulation factor VIII (hFVIII). In study 1, no immunosuppression was compared with prednisolone, rapamycin (or sirolimus), rapamycin and cyclosporin A in combination, and cyclosporin A and azathioprine in combination.

View Article and Find Full Text PDF

Ornithine transcarbamylase deficiency is a rare X-linked genetic urea cycle disorder leading to episodes of acute hyperammonemia, adverse cognitive and neurological effects, hospitalizations, and in some cases death. DTX301, a non-replicating, recombinant self-complimentary adeno-associated virus vector serotype 8 (scAAV8)-encoding human ornithine transcarbamylase, is a promising gene therapy for ornithine transcarbamylase deficiency; however, the impact of sex and prophylactic immunosuppression on ornithine transcarbamylase gene therapy outcomes is not well characterized. This study sought to describe the impact of sex and immunosuppression in adult, sexually mature female and male cynomolgus macaques through day 140 after DTX301 administration.

View Article and Find Full Text PDF

In traditional clinical trial design, efficacy is typically assessed using a single primary endpoint in a randomized controlled trial to detect an expected treatment effect of a therapy in a narrowly selected patient population. This accepted paradigm is based on clinical evaluations that may not actually capture the breadth of the impact of a disease, which is especially true in the setting of complex, multisystem, rare diseases with small, extremely heterogeneous patient populations. The multi-domain responder index (MDRI) is a novel approach that accommodates complex and heterogeneous disease manifestations and evaluates a broad array of clinical disease without impairing the power or rigor of a study to fully understand a treatment.

View Article and Find Full Text PDF

It has recently been suggested that registries for rare neuromuscular diseases should be formed and governed exclusively by physicians and patients in an effort to limit conflicts of interest. Enacting such an approach would not only be challenging logistically and financially, but it would also exclude the involvement of sponsors, who are an integral component of drug development within the current compliance framework. Therefore, as an alternative to traditional registries, we propose the use of a better collaborative model for post-marketing follow-up that includes all stakeholders.

View Article and Find Full Text PDF

Background: GNE myopathy is a rare, autosomal recessive, muscle disease caused by mutations in GNE and is characterized by rimmed vacuoles on muscle biopsy and progressive distal to proximal muscle weakness.

Objective: Investigate the clinical presentation and progression of GNE myopathy.

Methods: The GNE Myopathy Disease Monitoring Program was an international, prospective, observational study in subjects with GNE myopathy.

View Article and Find Full Text PDF

Galactosialidosis is a rare lysosomal storage disease caused by a congenital defect of protective protein/cathepsin A (PPCA) and secondary deficiency of neuraminidase-1 and β-galactosidase. PPCA is a lysosomal serine carboxypeptidase that functions as a chaperone for neuraminidase-1 and β-galactosidase within a lysosomal multi-protein complex. Combined deficiency of the three enzymes leads to accumulation of sialylated glycoproteins and oligosaccharides in tissues and body fluids and manifests in a systemic disease pathology with severity mostly correlating with the type of mutation(s) and age of onset of the symptoms.

View Article and Find Full Text PDF

Background: Mucopolysaccharidoses (MPS) are a group of rare, inherited metabolic diseases that result from a deficiency in one of several lysosomal enzymes essential for stepwise glycosaminoglycan (GAG) degradation, leading to GAG accumulation and widespread cellular pathology and clinical disease. Although disease presentation is heterogeneous, the clinical hallmarks are largely comparable across several MPS subtypes. Extensive data have shown that the level of urinary GAG (uGAG) excretion above normal is strongly correlated with disease severity and clinical outcomes in MPS diseases.

View Article and Find Full Text PDF

Accumulations of glycosaminoglycans (GAGs) that result from deficiencies in lysosomal hydrolases are characteristic of mucopolysaccharidoses (MPS). Enzyme replacement therapies (ERTs) are now available for several MPS diseases (MPS I, MPS II, MPS IVA, MPS VI, and MPS VII), but assessment of the efficacy of treatment can be challenging because these are rare, progressive, and highly heterogeneous diseases; because some clinical manifestations may be irreversible if treatment initiation is delayed; and because determining the benefits of a treatment to prevent those manifestations may take prolonged periods of time. In addition to accumulation of GAGs in tissues, elevated urinary GAG (uGAG) levels are evident and are reduced rapidly after initiation of ERT.

View Article and Find Full Text PDF

Mucopolysaccharidosis VII (MPS VII) is a rare lysosomal storage disease characterized by a deficiency in the enzyme β-glucuronidase that has previously been successfully treated in a mouse model with enzyme replacement therapy. Here, we present the generation of a novel, highly sialylated version of recombinant human β-glucuronidase (rhGUS), vestronidase alfa, that has high uptake, resulting in an improved enzyme replacement therapy for the treatment of patients with MPS VII. In vitro, vestronidase alfa has 10-fold more sialic acid per mole of rhGUS monomer than a prior rhGUS version (referred to as GUS 43/44) and demonstrated very high affinity at ~1 nM half maximal uptake in human MPS VII fibroblasts.

View Article and Find Full Text PDF

Congenital deficiency of the lysosomal sialidase neuraminidase 1 (NEU1) causes the lysosomal storage disease, sialidosis, characterized by impaired processing/degradation of sialo-glycoproteins and sialo-oligosaccharides, and accumulation of sialylated metabolites in tissues and body fluids. Sialidosis is considered an ultra-rare clinical condition and falls into the category of the so-called orphan diseases, for which no therapy is currently available. In this study we aimed to identify potential therapeutic modalities, targeting primarily patients affected by type I sialidosis, the attenuated form of the disease.

View Article and Find Full Text PDF

Objective: To investigate the efficacy and safety of aceneuramic acid extended-release (Ace-ER), a treatment intended to replace deficient sialic acid, in patients with GNE myopathy.

Methods: UX001-CL301 was a phase 3, double-blind, placebo-controlled, randomized, international study evaluating the efficacy and safety of Ace-ER in patients with GNE myopathy. Participants who could walk ≥200 meters in a 6-minute walk test at screening were randomized 1:1, and stratified by sex, to receive Ace-ER 6 g/d or placebo for 48 weeks and assessed every 8 weeks.

View Article and Find Full Text PDF

Long-chain fatty acid oxidation disorders (LC-FAOD) are rare disorders characterized by acute crises of energy metabolism and severe energy deficiency that may present with cardiomyopathy, hypoglycemia, and/or rhabdomyolysis, which can lead to frequent hospitalizations and early death. An open-label Phase 2 study evaluated the efficacy of UX007, an investigational odd-carbon medium-chain triglyceride, in 29 subjects with severe LC-FAOD. UX007 was administered over 78 weeks at a target dose of 25-35% total daily caloric intake (mean 27.

View Article and Find Full Text PDF

Background: X-linked hypophosphatemia is characterized by increased secretion of fibroblast growth factor 23 (FGF-23), which leads to hypophosphatemia and consequently rickets, osteomalacia, and skeletal deformities. We investigated burosumab, a monoclonal antibody that targets FGF-23, in patients with X-linked hypophosphatemia.

Methods: In an open-label, phase 2 trial, we randomly assigned 52 children with X-linked hypophosphatemia, in a 1:1 ratio, to receive subcutaneous burosumab either every 2 weeks or every 4 weeks; the dose was adjusted to achieve a serum phosphorus level at the low end of the normal range.

View Article and Find Full Text PDF

Background: Drug development for ultra-rare diseases is challenging because small sample sizes and heterogeneous study populations hamper the ability of randomized, placebo-controlled trials with a single primary endpoint to demonstrate valid treatment effects.

Methods: To overcome these challenges, a novel Blind Start design was utilized in a study of vestronidase alfa in mucopolysaccharidosis VII (Sly syndrome), an ultra-rare lysosomal disease, that demonstrates the strengths of this approach in a challenging drug-development setting. Twelve subjects were randomized to 1 of 4 blinded groups, each crossing over to active treatment in a blinded fashion at different timepoints with efficacy analysis comparing the last assessment before cross over to after 24 weeks of treatment.

View Article and Find Full Text PDF

GNE myopathy is a rare distal myopathy, caused by mutations in the GNE gene, affecting sialic acid synthesis. Clinical presentation varies from asymptomatic early stage patients to severely debilitating forms. This first report describes clinical presentations and severity of the disease, using data of 150 patients collected via the on-line, patient-reported registry component of the GNE Myopathy Disease Monitoring Program (GNEM-DMP).

View Article and Find Full Text PDF

GNE myopathy (GNEM), also known as hereditary inclusion body myopathy (HIBM), is a late- onset, progressive myopathy caused by mutations in the GNE gene encoding the enzyme responsible for the first regulated step in the biosynthesis of sialic acid (SA). The disease is characterized by distal muscle weakness in both the lower and upper extremities, with the quadriceps muscle relatively spared until the late stages of disease. To explore the role of SA synthesis in the disease, we conducted a comprehensive and systematic analysis of both free and total SA levels in a large cohort of GNEM patients and a mouse model.

View Article and Find Full Text PDF

Background: Long-chain fatty acid oxidation disorders (LC-FAOD) lead to accumulation of high concentrations of potentially toxic fatty acid intermediates. Newborn screening and early intervention have reduced mortality, but most patients continue to experience frequent hospitalizations and significant morbidity despite treatment. The deficient energy state can cause serious liver, muscle, and heart disease, and may be associated with an increased risk of sudden death.

View Article and Find Full Text PDF

Background: GNE Myopathy (GNEM) is a progressive adult-onset myopathy likely caused by deficiency of sialic acid (SA) biosynthesis.

Objective: Evaluate the safety and efficacy of SA (delivered by aceneuramic acid extended-release [Ace-ER]) as treatment for GNEM.

Methods: A Phase 2, randomized, double-blind, placebo-controlled study evaluating Ace-ER 3 g/day or 6 g/day versus placebo was conducted in GNEM subjects (n = 47).

View Article and Find Full Text PDF

Rare disease drug development could benefit substantially from increased patient engagement and input to enhance understanding of the key aspects of disease impact, ways to measure these impacts and patients' perspectives on the benefit-risk profile of potential therapies.

View Article and Find Full Text PDF

Background: Long chain fatty acid oxidation disorders (LC-FAODs) are caused by defects in the metabolic pathway that converts stored long-chain fatty acids into energy, leading to a deficiency in mitochondrial energy production during times of physiologic stress and fasting. Severe and potentially life threatening clinical manifestations include rhabdomyolysis, hypoglycemia, hypotonia/weakness, cardiomyopathy and sudden death. We present the largest cohort of patients to date treated with triheptanoin, a specialized medium odd chain (C7) triglyceride, as a novel energy source for the treatment of LC-FAOD.

View Article and Find Full Text PDF

For rare serious and life-threatening disorders, there is a tremendous challenge of transforming scientific discoveries into new drug treatments. This challenge has been recognized by all stakeholders who endorse the need for flexibility in the regulatory review process for novel therapeutics to treat rare diseases. In the United States, the best expression of this flexibility was the creation of the Accelerated Approval (AA) pathway.

View Article and Find Full Text PDF

Mucopolysaccharidosis type VII (MPS VII, Sly syndrome) is a very rare lysosomal storage disease caused by a deficiency of the enzyme β-glucuronidase (GUS), which is required for the degradation of three glycosaminoglycans (GAGs): dermatan sulfate, heparan sulfate, and chondroitin sulfate. Progressive accumulation of these GAGs in lysosomes leads to increasing dysfunction in numerous tissues and organs. Enzyme replacement therapy (ERT) has been used successfully for other MPS disorders, but there is no approved treatment for MPS VII.

View Article and Find Full Text PDF