Publications by authors named "Kakarenko K"

Article Synopsis
  • Many patients are opting for EDOF or multifocal lenses during cataract surgery, which can lead to visual disturbances like halos and glare.
  • A new perimetry method has been developed to quantitatively assess these dysphotopsias in the far-field when exposed to bright, point-like light sources.
  • This approach includes a custom device and specific measurement procedures to objectively study dysphotopsias in patients with mild cataracts or implanted intraocular lenses (IOLs).
View Article and Find Full Text PDF

This work presents the first models of light sword intraocular lenses (LS IOLs) with angularly modulated optical power. We performed an experimental, comparative study with multifocal and extended depth of focus intraocular lenses, which are available on the market. The measurements conducted in an original optical bench were utilised for an analysis of point spread functions, elongated foci, modulation transfer functions and the areas defined by them.

View Article and Find Full Text PDF

Purpose: Clinical assessment of a new optical element for presbyopia correction-the Light Sword Lens.

Methods: Healthy dominant eyes of 34 presbyopes were examined for visual performance in 3 trials: reference (with lens for distance correction); stenopeic (distance correction with a pinhole ϕ = 1.25 mm) and Light Sword Lens (distance correction with a Light Sword Lens).

View Article and Find Full Text PDF

We present outcomes of an imaging experiment using the refractive light sword lens (LSL) as a contact lens in an optical system that serves as a simplified model of the presbyopic eye. The results show that the LSL produces significant improvements in visual acuity of the simplified presbyopic eye model over a wide range of defocus. Therefore, this element can be an interesting alternative for the multifocal contact and intraocular lenses currently used in ophthalmology.

View Article and Find Full Text PDF

We discuss thin optical structures that allow chromatic aberrations to be avoided in the THz domain. The paper contains the theoretical considerations, computer modeling and experimental evaluation of the high order kinoform diffractive elements in the THz range. According to the obtained results application of the high order kinoforms enables broadband operation in the THz range.

View Article and Find Full Text PDF

We report on the interesting effect observed with the diffractive binary element, which matches the property of an axicon and vortex lens. Binary phase coding simplifies the manufacturing process and gives additional advantages for metrology purposes. Under laser beam illumination, our element produces two waves: converging and diverging.

View Article and Find Full Text PDF

The experimental and numerical evaluation of the shadow effect in kinoform diffractive gratings for the terahertz (THz) range is given. This effect limits the diffractive efficiency of dense gratings, which are the base of the elements suited for convenient beam focusing and imaging in THz. The observed effect of redirecting most of the incident energy into stray -1st diffractive order is observed and discussed.

View Article and Find Full Text PDF

Extremely simplified image projection technique based on optical fibers and a single Spatial Light Modulator is presented. Images are formed by addressing the modulator with especially iterated Fourier holograms, precisely aligned on the projection screen using phase factors of lenses and gratings. Focusing is done electronically with no moving parts.

View Article and Find Full Text PDF

This Letter presents a new method for modeling of complex optical setups illuminated by quasi monochromatic spatially incoherent light. The algorithm provides better performance and quality than other modeling methods both for isoplanatic and nonisoplanatic systems. The algorithm maintains energy relations, image orientation, and magnification of the system.

View Article and Find Full Text PDF

The paper analyzes the imaging properties of the light sword optical element (LSOE) applied as a contact lens to the presbyopic human eye. We performed our studies with a human eye model based on the Gullstrand parameterization. In order to quantify the discussion concerning imaging with extended depth of focus, we introduced quantitative parameters characterizing output images of optotypes obtained in numerical simulations.

View Article and Find Full Text PDF

An improved efficient projection of color images is presented. It uses a phase spatial light modulator with three iteratively optimized Fourier holograms displayed simultaneously--each for one primary color. This spatial division instead of time division provides stable images.

View Article and Find Full Text PDF

We present results of numerical analysis of the Strehl ratio characteristics for the light sword optical element (LSOE). For comparison there were analyzed other optical imaging elements proposed for compensation of presbyopia such as the bifocal lens, the trifocal lens, the stenopeic contact lens, and elements with extended depth of focus (EDOF), such as the logarithmic and quartic axicons. The simulations were based on a human eye's model being a simplified version of the Gullstrand model.

View Article and Find Full Text PDF