We demonstrate that x-ray fluorescence emission, which cannot maintain a stationary interference pattern, can be used to obtain images of structures by recording photon-photon correlations in the manner of the stellar intensity interferometry of Hanbury Brown and Twiss. This is achieved utilizing femtosecond-duration pulses of a hard x-ray free-electron laser to generate the emission in exposures comparable to the coherence time of the fluorescence. Iterative phasing of the photon correlation map generated a model-free real-space image of the structure of the emitters.
View Article and Find Full Text PDFX-rays are routinely used for structural studies through scattering, and femtosecond X-ray lasers can probe ultrafast dynamics. We aim to capture the femtosecond dynamics of liquid samples using simulations and deconstruct the interplay of ionization and atomic motion within the X-ray laser pulse. This deconstruction is resolution dependent, as ionization influences the low momentum transfers through changes in scattering form factors, while atomic motion has a greater effect at high momentum transfers through loss of coherence.
View Article and Find Full Text PDFHIV-1 is restricted in macrophages and certain quiescent myeloid cells due to a "Scorched Earth" dNTP starvation strategy attributed to the sterile alpha motif and HD domain protein-SAMHD1. Active SAMHD1 tetramers are assembled by GTP-Mg+2-dNTP cross bridges and cleave the triphosphate groups of dNTPs at a K of ~10 μM, which is consistent with dNTP concentrations in cycling cells, but far higher than the equivalent concentration in quiescent cells. Given the substantial disparity between the dNTP concentrations required to activate SAMHD1 tetramers (~10 μM) and the dNTP concentrations in noncycling cells (~10 nM), the possibility of alternate enzymatically active forms of SAMHD1, including monomers remains open.
View Article and Find Full Text PDFThe sterile alpha motif and histidine-aspartate domain-containing protein 1 (or SAMHD1), a human dNTP-triphosphohydrolase, contributes to HIV-1 restriction in select terminally differentiated cells of the immune system. The catalytically active form of the protein is an allosterically triggered tetramer, whose HIV-1 restriction properties are attributed to its dNTP-triphosphohydrolase activity. The tetramer itself is assembled by a GTP/dNTP combination.
View Article and Find Full Text PDFThe human sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a retroviral restriction factor in myeloid cells and non-cycling CD4+ T cells, a feature imputed to its phosphohydrolase activity-the enzyme depletes the cellular dNTP levels inhibiting reverse transcription. The functionally active form of SAMHD1 is an allosterically triggered tetramer which utilizes GTP-Mg -dNTP cross bridges to link and stabilize adjacent monomers. However, very little is known about how it assembles into a tetramer and how long the tetramer stays intact.
View Article and Find Full Text PDF