The Komeda miniature rat Ishikawa (KMI) is a spontaneous animal model of dwarfism caused by a mutation in Prkg2, which encodes cGMP-dependent protein kinase type II (cGKII). This strain has been maintained as a segregating inbred strain for the mutated allele mri. In this study, we characterized the phenotype of the KMI strain, particularly growth traits, craniofacial measurements, and organ weights.
View Article and Find Full Text PDFGlucokinase (Gck) functions as a glucose sensor for insulin secretion, and in mice fed standard chow, haploinsufficiency of beta cell-specific Gck (Gck(+/-)) causes impaired insulin secretion to glucose, although the animals have a normal beta cell mass. When fed a high-fat (HF) diet, wild-type mice showed marked beta cell hyperplasia, whereas Gck(+/-) mice demonstrated decreased beta cell replication and insufficient beta cell hyperplasia despite showing a similar degree of insulin resistance. DNA chip analysis revealed decreased insulin receptor substrate 2 (Irs2) expression in HF diet-fed Gck(+/-) mouse islets compared with wild-type islets.
View Article and Find Full Text PDFHeterozygous peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-deficient (PPARgamma(+/-)) mice were protected from high-fat diet-induced insulin resistance. To determine the impact of systemic reduction of PPAR-gamma activity on beta-cell function, we investigated insulin secretion in PPARgamma(+/-) mice on a high-fat diet. Glucose-induced insulin secretion in PPARgamma(+/-) mice was impaired in vitro.
View Article and Find Full Text PDFThe Komeda miniature rat Ishikawa (KMI) is a naturally occurring mutant caused by an autosomal recessive mutation mri, which exhibits longitudinal growth retardation. Here we identified the mri mutation as a deletion in the rat gene encoding cGMP-dependent protein kinase type II (cGKII). KMIs showed an expanded growth plate and impaired bone healing with abnormal accumulation of postmitotic but nonhypertrophic chondrocytes.
View Article and Find Full Text PDFMice lacking the p85alpha regulatory subunit of phosphoinositide (PI) 3-kinase (Pik3r1(-/-)) showed increased glucose uptake in white adipose tissue (WAT) and skeletal muscle due to increased phosphatidylinositol (3,4,5)-triphosphate [PtdIns(3,4,5)P3] production and on a normal diet had a body weight and fat mass similar to wild-type mice. After 3 months on a high-fat diet, Pik3r1(-/-) mice still had increased insulin sensitivity and better glucose tolerance than wild-type mice, but showed markedly greater increases in body weight and WAT mass than wild-type mice. On the normal diet, serum leptin levels of Pik3r1(-/-) mice were significantly higher than in wild-type mice as a result of increased leptin secretion from adipocytes, presumably due to the increased PtdIns(3,4,5)P3 production in adipocytes.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2004
To characterize the underlying mechanisms of diabetes development in males of the Spontaneously Diabetic Torii (SDT) rat, a novel spontaneous model for diabetes, we chronologically examined them, focusing on their diabetic features and the pathological changes in the pancreatic islets. Male SDT rats exhibited glucose intolerance with impaired insulin secretion after 14 weeks and developed diabetes with remarkable hyperglycemia and marked hypoinsulinemia after 20 weeks. At prediabetic stage (10-20 weeks), they were normoglycemic, but had significantly lower insulin levels of plasma and pancreas than the normal rats.
View Article and Find Full Text PDFThe Komeda diabetes-prone (KDP) rat is a spontaneous animal model of human autoimmune type 1 diabetes. By positional cloning of the non-MHC major susceptibility locus lddm/kdp1, we recently identified a nonsense mutation in Cblb and also found that lymphocytes of KDP rats infiltrate into various tissues, indicating autoimmunity. The maintenance and production of KDP rats has been a critical problem owing to the poor reproductive ability of diabetic animals.
View Article and Find Full Text PDFWe previously demonstrated that Irs2-/- mice develop diabetes due to beta-cell growth failure and insulin resistance; however, glucose-induced insulin secretion was increased in islets isolated from Irs2-/- mice. Pdx-1, a transcription factor important for maintenance of the beta-cell function, was recently reported to be severely reduced in Irs2-/- murine beta-cells. We report herein that Pdx-1 expression, including the amount of Pdx-1 localized in the nucleus, is not down-regulated in our Irs2-/- murine beta-cells with a C57BL/6 background.
View Article and Find Full Text PDFBrain Res Mol Brain Res
April 2003
Reelin (Reln) is an extracellular matrix protein secreted from distinct neuronal populations and controls neural cell positioning during brain development. Alterations of human RELN have been reported in two pedigrees with an autosomal recessive lissencephaly. Although several alleles of the mouse reeler mutation were identified as disruptions of Reln, there is no other animal model with a confirmed mutation in Reln.
View Article and Find Full Text PDFAlthough we and others have generated IRS-2 knock-out (IRS-2(-/-)) mice, significant differences were seen between the two lines of IRS-2(-/-) mice in the severity of diabetes and alterations of beta-cell mass. It has been reported that although IRS-1 and IRS-3 knock-out mice showed normal blood glucose levels, IRS-1/IRS-3 double knock-out mice exhibited marked hyperglycemia. Thus, IRS-1 and IRS-3 compensate each other's functions in maintaining glucose homeostasis.
View Article and Find Full Text PDFThe adipocyte-derived hormone adiponectin has been shown to play important roles in the regulation of energy homeostasis and insulin sensitivity. In this study, we analyzed globular domain adiponectin (gAd) transgenic (Tg) mice crossed with leptin-deficient ob/ob or apoE-deficient mice. Interestingly, despite an unexpected similar body weight, gAd Tg ob/ob mice showed amelioration of insulin resistance and beta-cell degranulation as well as diabetes, indicating that globular adiponectin and leptin appeared to have both distinct and overlapping functions.
View Article and Find Full Text PDFThe autoimmune disease type 1 diabetes mellitus (insulin-dependent diabetes mellitus, IDDM) has a multifactorial etiology. So far, the major histocompatibility complex (MHC) is the only major susceptibility locus that has been identified for this disease and its animal models. The Komeda diabetes-prone (KDP) rat is a spontaneous animal model of human type 1 diabetes in which the major susceptibility locus Iddm/kdp1 accounts, in combination with MHC, for most of the genetic predisposition to diabetes.
View Article and Find Full Text PDFThe CBP protein (cAMP response element binding protein (CREB) binding protein) is a co-activator for several transcription factors with a wide range of important biological functions, such as sterol regulatory element binding proteins (SREBPs), CCAAT/enhancer-binding proteins (C/EBPs), nuclear receptors (including peroxisome proliferator-activated receptors, PPARs), and signal transducers and activators of transcription (STATs). In contrast to these individual transcription factors, the biological roles of CBP are poorly understood. CBP enhances transcriptional activities via histone acetylation and the recruitment of additional co-activators such as SRC (steroid coactivator)-1 (ref.
View Article and Find Full Text PDF