Metabolic dysfunction-associated steatohepatitis (MASH) is a common but frequently unrecognized complication of obesity and type 2 diabetes. The association between these conditions is multifaceted and involves complex interactions between metabolic, inflammatory, and genetic factors. Here we assess the underlying structural and molecular processes focusing on the immunological phase of MASH in the nonobese inflammation and fibrosis (NIF) mouse model and compare it to the human disease as well as other murine models.
View Article and Find Full Text PDFSterile liver inflammation and fibrosis are associated with many liver disorders of different etiologies. Both type 1 and type 2 inflammatory responses have been reported to contribute to liver pathology. However, the mechanisms controlling the balance between these responses are largely unknown.
View Article and Find Full Text PDFAMPK activated protein kinase (AMPK), a master regulator of energy homeostasis, is activated in response to an energy shortage imposed by physical activity and caloric restriction. We here report on the identification of PAN-AMPK activator O304, which - in diet-induced obese mice - increased glucose uptake in skeletal muscle, reduced β cell stress, and promoted β cell rest. Accordingly, O304 reduced fasting plasma glucose levels and homeostasis model assessment of insulin resistance (HOMA-IR) in a proof-of-concept phase IIa clinical trial in type 2 diabetes (T2D) patients on Metformin.
View Article and Find Full Text PDFThe activity of phosphatidylserine synthase from Escherichia coli depends significantly on the nature and level of the lipids in the matrix, at which the enzyme is operating. To elucidate the role of anionic lipids in the regulation of PtdSer synthase, its activity was studied in mixed micelles containing phosphatidylglycerol (one charge) or diphosphatidylglycerol (two charges), the two main anionic membrane lipids in E. coli.
View Article and Find Full Text PDF