The circadian clock enables animals to adapt their physiology and behaviour in anticipation of the day-night cycle. Light and temperature represent two key environmental timing cues (zeitgebers) able to reset this mechanism and so maintain its synchronization with the environmental cycle. One key challenge is to unravel how the regulation of the clock by zeitgebers matures during early development.
View Article and Find Full Text PDFOne key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis.
View Article and Find Full Text PDFMost organisms possess circadian clocks that are able to anticipate the day/night cycle and are reset or "entrained" by the ambient light. In the zebrafish, many organs and even cultured cell lines are directly light responsive, allowing for direct entrainment of the clock by light. Here, we have characterized light induced gene transcription in the zebrafish at several organizational levels.
View Article and Find Full Text PDFFor most species, light represents the principal environmental signal for entraining the endogenous circadian clock. The zebrafish is a fascinating vertebrate model for studying this process since unlike mammals, direct exposure of most of its tissues to light leads to local clock entrainment. Importantly, light induces the expression of a set of genes including certain clock genes in most zebrafish cell types in vivo and in vitro.
View Article and Find Full Text PDFThe zebrafish has rapidly become established as one of the most valuable vertebrate models for studying circadian clock function. A major initial attraction was its utility in large-scale genetic screens. It subsequently emerged that most zebrafish cells possess circadian clocks that can be entrained directly by exposure to temperature or light dark cycles, a property shared by several zebrafish cell lines.
View Article and Find Full Text PDFSmall fish are a popular laboratory model for studying gene expression and function by transgenesis. If, however, the transgenes are not readily detectable by visual inspection, a large number of embryos must be injected, raised and screened to identify positive founder fish. Here, we describe a strategy to efficiently generate and preselect transgenic lines harbouring any transgene of interest.
View Article and Find Full Text PDFClock output pathways play a pivotal role by relaying timing information from the circadian clock to a diversity of physiological systems. Both cell-autonomous and systemic mechanisms have been implicated as clock outputs; however, the relative importance and interplay between these mechanisms are poorly understood. The cell cycle represents a highly conserved regulatory target of the circadian timing system.
View Article and Find Full Text PDFThe contribution of timing cues from the environment to the coordination of early developmental processes is poorly understood. The day-night cycle represents one of the most important, regular environmental changes that animals are exposed to. A key adaptation that allows animals to anticipate daily environmental changes is the circadian clock.
View Article and Find Full Text PDFIt has been well-documented that temperature influences key aspects of the circadian clock. Temperature cycles entrain the clock, while the period length of the circadian cycle is adjusted so that it remains relatively constant over a wide range of temperatures (temperature compensation). In vertebrates, the molecular basis of these properties is poorly understood.
View Article and Find Full Text PDF